用matlab仿真0到9十个数字的语音识别

本文介绍如何使用MATLAB进行0到9十个数字的语音识别。通过处理WAV和LAB文件生成对应数字的波形文件,然后利用这些文件训练HMM模板。通过计算MFCC系数进行识别,正确率超过90%。提供了完整的MATLAB代码实现。
摘要由CSDN通过智能技术生成

用matlab仿真0到9十个数字的语音识别

关注次数: 445

下载次数: 31

文件大小: 109K

下载需要积分: 1

代码分类:

开发平台: matlab

上传会员: 8211041

下载代码

预览代码

Downma.com:专注MATLAB源程序代码下载和分享

代码描述

用matlab仿真0到9十个数字的语音识别1、对语音的WAV文件和LAB文件进行处理,产生十个文件,每个文件对应于一个数字,存贮着该数字的波形文件。(shujuzhengli.m)2、分别利用上面十个文件训练出十个HMM模板,具体方法是:首先将语音的波形文件分帧,以128个点为一帧,帧为64,每一帧通过mfcc.m计算出13个系数,随着波形的长度不同,一个语音文件可以计算得到13*N个系数,截取13*15的矩阵(mfcc系数)用作训练数据。一般一个HMM模板用20组mfcc系数训练,得到初始状态分布、状态转移矩阵、高斯正态分布的均值和方差以及混合矩阵,这就是该语音的特征,存贮下来,识别的时候使用。(trainmfcc.m)3识别过程:识别的前面部分与训练相似,都是要计算得到mfcc系数,不同在于,识别时,将计算得到的mfcc 参数分别代入训练得到的HMM模板求出概率,比较出最大概率者,则该模板对应的数字就是识别的数字。(shibiesb.m)4、用大量语音文件做测试,结果正确率为90 以上。

代码预览

READHTK.M

consist.m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值