paper_note
文章平均质量分 92
StatisticsLiu
这个作者很懒,什么都没留下…
展开
-
【文献阅读】FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows原创 2021-12-13 19:38:04 · 7140 阅读 · 4 评论 -
【文献阅读】Deep Anomaly Detection with Outlier Exposure
深度异常检测与异常暴露文章目录深度异常检测与异常暴露AbstractIntroduction2 Related Work3 Outlier Exposure4、Experiments4.1 OOD检测器的评估4.2 各种数据集的介绍(略)4.3 多分类Maximum Softmax Probability(MSP)Abstract在部署机器学习系统时,检测异常的输入非常重要。更大、更复杂的输入,加大了区分异常examples和分布内example的难度。与此同时,各种各样的图像和文本数据也大量存在。我原创 2021-04-23 10:41:50 · 2204 阅读 · 0 评论 -
【文献阅读】Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
使用自监督学习可以提高模型的鲁棒性和不确定性文章目录使用自监督学习可以提高模型的鲁棒性和不确定性AbstractIntroduction1、某些方面提高模型的鲁棒性2、提高了near-distribution样本的检测效果3、评价Out-of-Distribution Detection4.2 One-class learning前人做法作者方法Cifar10数据集ImageNet 数据集ConclusionAbstract(1)现有的方法落后于基于监督学习的方法,只是在不需要或者减少需要标签方面有好原创 2021-04-21 19:23:47 · 1034 阅读 · 0 评论 -
【文献阅读】CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
课题文献调研CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances在上一篇SSD的阅读中提出,在OOD检测中,他的表现不如这篇文章(仅仅是ood检测,别的下游任务的表现还是很棒的),基于自己的工业数据,baseline仅达到了auroc78,所以还需要继续深入探讨如何优化模型文章目录课题文献调研摘要Introduction研究了以下两个问题:点子:对比学习基础上的两个新贡献:CSI: C原创 2021-04-19 21:05:22 · 1789 阅读 · 0 评论 -
【文献阅读】SSD: A Unified Framework for Self-Supervised Outlier Detection (ICLR2021)
择情阅读:SSD: A Unified Framework for Self-Supervised Outlier Detection (ICLR2021)文章目录择情阅读:SSD: A Unified Framework for Self-Supervised Outlier Detection (ICLR2021)一、摘要二、Introduction核心问题:两个key:两个extension:主要贡献:三、SSD1、背景:Contrastive self-supervised represent原创 2021-04-11 17:06:30 · 648 阅读 · 0 评论