语言
Java
530.二叉搜索树的最小绝对差
题目
给你一个二叉搜索树的根节点 root
,返回 树中任意两不同节点值之间的最小差值 。
差值是一个正数,其数值等于两值之差的绝对值。
思路
利用双指针的思路,在节点进行递归的时候就进行比较前后的值,用一个数存最小值不断更新。
代码
class Solution {
TreeNode pre = null;
int res = Integer.MAX_VALUE;
public int getMinimumDifference(TreeNode root) {
if (root == null) return 0;
traversal(root);
return res;
}
public void traversal(TreeNode cur) {
if (cur == null) return;
traversal(cur.left);
if (pre != null) {
res = Math.min(res, cur.val - pre.val);
}
pre = cur;
traversal(cur.right);
}
}
易错点
中序遍历 左中右的时候其中的中 条件为前一个节点不为空。避免了空指针异常
在判断前一个节点是否为空的时候要用if不是while
501.二叉搜索树中的众数
题目
给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。
如果树中有不止一个众数,可以按 任意顺序 返回。
假定 BST 满足如下定义:
结点左子树中所含节点的值 小于等于 当前节点的值
结点右子树中所含节点的值 大于等于 当前节点的值
左子树和右子树都是二叉搜索树
思路
采用递归加上全局变量的方法解决此问题,定义 一个计数的记录众数,定义一个最大记录,记录出现最多的,还有结果数组,一个节点用来比较值。
递归参数:节点。终止条件:节点为空
单层递归:采用中序遍历 左中右,处理中的时候,先判读自定义节点是否为空,还有两个相邻节点的值是否相等。不相等的话记录为1,相等的话count++。再判断记录值是否大于最大记录,如果大于就进行更新。
代码
class Solution {
ArrayList<Integer> resList = new ArrayList<>();
int count = 0;
int maxCount = 0;
TreeNode pre = null;
public int[] findMode(TreeNode root) {
findMode1(root);
int[] res = new int[resList.size()];
for (int i = 0; i < res.length; i++) {
res[i] = resList.get(i);
}
return res;
}
public void findMode1(TreeNode root) {
if (root == null) return;
findMode1(root.left);
int rootValue = root.val;
if (pre == null || pre.val != rootValue) {
count = 1;
} else {
count++;
}
pre = root;
if (count > maxCount) {
resList.clear();
resList.add(rootValue);
maxCount = count;
} else if (count == maxCount) {
resList.add(rootValue);
}
findMode1(root.right);
}
}
易错点
最后需要创建一个数组来存结果。
处理中节点的时候判断条件要小心。
236. 二叉树的最近公共祖先
题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
思路
还是采取递归,递归终止条件:节点为空或节点等于P或Q
节点参数:节点,P,Q
单层递归:左右中的顺序遍历,最后处理中节点判读左右是否为空。
代码
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || root == p || root == q) { // 递归结束条件
return root;
}
// 后序遍历
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if(left == null && right == null) { // 若未找到节点 p 或 q
return null;
}else if(left == null && right != null) { // 若找到一个节点
return right;
}else if(left != null && right == null) { // 若找到一个节点
return left;
}else { // 若找到两个节点
return root;
}
}
}
易错点
把处理中节点的时候,边界条件处理好。
总结
不积跬步无以至千里。