[DAY001]考研数学极限的计算知识点与题目总结(一)

本文总结了考研数学中关于极限的重要知识点,包括重要极限、需要讨论的极限及二级结论。通过实例解析了涉及幂指函数、阶乘、零因子消去和多项式系数的极限问题,并强调了灵活运用等价变换、泰勒展开、拉格朗日中值定理等方法。此外,还提醒考生在处理极限的四则运算时要注意存在的条件和陷阱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内容说明:
	1. 博文绝大部分题目来自2022版武忠祥老师《十七堂课》,少部分来自宇哥的2022讲义
	2. 博文习题难度中下,计算量偏大,部分题目计算量极其巨大
	3. 勤练兵,常磨刀,瓜瓜要上岸~
编辑历史
	2022/1/14 : 第一次编辑

第一部分 重要极限

知识提要

a)常用的重要极限

lim ⁡ x → ∞ s i n x x = 1 \lim _{x\to \infty} \frac{sinx}{x}=1 xlimxsinx=1 lim ⁡ ( 1 + Δ ) ∞ = e lim ⁡ Δ ∞ \lim (1+\Delta)^\infty = e^{\lim \Delta \infty} lim(1+Δ)=elimΔ lim ⁡ n → ∞ n n = 1 \lim _{n\to \infty} \sqrt[n]{n}=1 nlimnn =1 lim ⁡ n → ∞ a n = 1 \lim _{n\to \infty} \sqrt[n]{a}=1 nlimna =1

b)常见的需要讨论的极限

lim ⁡ x → ∞ e x = { x → + ∞ : + ∞ x → − ∞ : 0 \lim _{x\to \infty} e^x = \left\{\begin{matrix} {x\to +\infty} :& +\infty \\ {x\to -\infty} :& 0 \end{matrix}\right. xlimex={ x+:x:+0 lim ⁡ x → ∞ a r c t a n x = { x → + ∞ : + π / 2 x → − ∞ : − π / 2 \lim _{x\to \infty} arctanx = \left\{\begin{matrix} {x\to +\infty} :& +\pi/2 \\ {x\to -\infty} :& -\pi/2 \end{matrix}\right. xlimarctanx={ x+:x:+π/2π/2 lim ⁡ x → c [ x ] = { x → c − : c − 1 x → c + : c 注:[x]是Gauss取整函数 \lim _{x\to c} [x] = \left\{\begin{matrix} {x\to c^-} :& c-1 \\ {x\to c^+} :&c \end{matrix}\right. \\ \text{注:[x]是Gauss取整函数} xclim[x]={ xc:xc+:c1c注:[x]Gauss取整函数

c)一些常见的二级结论

lim ⁡ n → ∞ n [ l n ( n + 1 ) − l n ( n ) ] = 1 \lim _{n\to \infty} n[ln(n+1)-ln(n)]=1 nlimn[ln(n+1)ln(n)]=1

习题

1). 涉及幂指函数的处理
s o l v e : lim ⁡ n → ∞ n n 2 + n + 1 n ( n + 1 ) n ( 5 n − 1 ) solve:\quad\lim _{n\to \infty} \frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n}(\sqrt[n]{5}-1) solve:nlim(n+1)nnnn2+n+1(n5 1)

solution 1:
lim ⁡ n → ∞ n n 2 + n + 1 n ( n + 1 ) n ( 5 n − 1 ) = lim ⁡ n → ∞ e n 2 + n + 1 n l n ( n ) − n l n ( n + 1 ) n l n 5 = lim ⁡ n → ∞ n e n [ l n ( n ) − l n ( n + 1 ) ] n n n l n 5 = e − 1 l n 5 \lim _{n\to \infty} \frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n}(\sqrt[n]{5}-1)=\lim _{n\to \infty} \frac{e^{\frac{n^2+n+1}{n}ln(n)-nln(n+1)}}{n}ln5=\lim _{n\to \infty} \frac{ne^{n[ln(n)-ln(n+1)]}\sqrt[n]{n}}{n}ln5 =e^{-1}ln5 nlim(n+1)nnnn2+n+1(n5 1)=nlimnenn2+n+1ln(n)nln(n+1)ln5=nlimnnen[ln(n)ln(n+1)]nn ln5=e1ln5

solution 2: lim ⁡ n → ∞ n n 2 + n + 1 n ( n + 1 ) n ( 5 n − 1 ) = lim ⁡ n → ∞ = n ⋅ n n ⋅ n n n ( n + 1 ) n l n 5 = lim ⁡ n → ∞ ( 1 + − 1 n + 1 ) n l n 5 = e lim ⁡ n → ∞ − n n + 1 l n 5 = e − 1 l n 5 \lim _{n\to \infty} \frac{n^{\frac{n^2+n+1}{n}}}{(n+1)^n}(\sqrt[n]{5}-1)=\lim _{n\to \infty} =\frac{n\cdot n^n\cdot \sqrt[n]{n}}{n(n+1)^n}ln5=\lim _{n\to \infty} (1+\frac{-1}{n+1} )^nln5=e^{\lim _{n\to \infty} -\frac{n}{n+1} }ln5=e^{-1}ln5 nlim(n+1)nn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值