题目描述
一条狭长的纸带被均匀划分出了 n 个格子,格子编号从 1 到 n 。每个格子上都染了一种颜色 colori 用 [1,m] 当中的一个整数表示),并且写了一个数字 numberi 。
定义一种特殊的三元组: (x,y,z) ,其中 x,y,z 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:
1.x,y,z 是整数, x<y<z,y-x=z-y
2.colorx=colorz
满足上述条件的三元组的分数规定为 (x+z) x (numberx+numberz) 。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 10,007 所得的余数即可。
输入描述:
第一行是用一个空格隔开的两个正整数 n 和 m,n 表纸带上格子的个数, m 表纸带上颜色的种类数。
第二行有 n 用空格隔开的正整数,第 i 数字 number 表纸带上编号为 i 格子上面写的数字。
第三行有 n 用空格隔开的正整数,第 i 数字 color 表纸带上编号为 i 格子染的颜色。
输出描述:
共一行,一个整数,表示所求的纸带分数除以10,007所得的余数。
示例1
输入
复制6 2 5 5 3 2 2 2 2 2 1 1 2 1
6 2
5 5 3 2 2 2
2 2 1 1 2 1
输出
82
82
说明
纸带如题目描述中的图所示。
所有满足条件的三元组为:(1,3,5),(4,5,6)。
所以纸带的分数为(1+5)∗(5+2)+(4+6)∗(2+2)=42+40=82。
示例2
输入
15 4 5 10 8 2 2 2 9 9 7 7 5 6 4 2 4 2 2 3 3 4 3 3 2 4 4 4 4 1 1 1
15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1
输出
1388
1388
备注:
对于第1组至第2组数据,1≤n≤100,1≤m≤5;
对于第3组至第4组数据,1≤n≤3000,1≤m≤100;
对于第5组至第6组数据,1≤n≤100000,1≤m≤100000,且不存在出现次数超过20的颜色;
对于全部10组数据,1≤n≤100000,1≤m≤100000,1≤colori≤m,1≤numberi≤100000。
看题目意思,当x与z同奇同偶时,可以满足,对于同一种颜色的多种不同的组合,
当有2个同颜色且同奇偶时,设序号为a,b,对应数值为numbera,numberb时
颜色为1时
当有3个同颜色且同奇偶时,设序号为a,b,c,对应数值分别为numbera,numberb,numberc
颜色为2时
当有4个同颜色且同奇偶时,设序号为a,b,c,d,对应数值分别为numbera,numberb,numberc,numberd
颜色为3时
color[tmp][0][i&1]记录序号和
color[tmp][1][i&1]记录数值和
color[tmp][2][i&1]记录序号和对应数值乘积和
i&1可以巧妙的区分当i为偶数和为奇数
偶数和1相与结果为0,奇数和1相与结果1为1
#include<iostream>
using namespace std;
int const num=1e5;
long long cnt[num][2]={0}; //1为奇,0为偶
long long number[num]={0};
long long color[num][3][2]={0};
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>number[i];
for(int i=1;i<=n;i++)
{
int tmp;
cin>>tmp;
cnt[tmp][i&1]++;
(color[tmp][0][i&1]+=i)%=10007;
(color[tmp][1][i&1]+=number[i])%=10007;
(color[tmp][2][i&1]+=i*number[i])%=10007;
}
long long sum=0;
for(int i=1;i<=m;i++)
for(int j=0;j<=1;j++)
{
sum+=color[i][0][j]*color[i][1][j]+(cnt[i][j]-2)*color[i][2][j];
sum%=10007;
}
cout<<sum;
}