2021-07-09 求和问题

题目描述

一条狭长的纸带被均匀划分出了 n 个格子,格子编号从 1 到 n 。每个格子上都染了一种颜色 colori 用 [1,m] 当中的一个整数表示),并且写了一个数字 numberi 。

定义一种特殊的三元组: (x,y,z) ,其中 x,y,z 都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

1.x,y,z 是整数, x<y<z,y-x=z-y
2.colorx=colorz

满足上述条件的三元组的分数规定为 (x+z) x (numberx+numberz) 。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 10,007 所得的余数即可。

输入描述:

第一行是用一个空格隔开的两个正整数 n 和 m,n 表纸带上格子的个数, m 表纸带上颜色的种类数。
第二行有 n 用空格隔开的正整数,第 i 数字 number 表纸带上编号为 i 格子上面写的数字。
第三行有 n 用空格隔开的正整数,第 i 数字 color 表纸带上编号为 i 格子染的颜色。

输出描述:

共一行,一个整数,表示所求的纸带分数除以10,007所得的余数。

示例1

输入

复制6 2 5 5 3 2 2 2 2 2 1 1 2 1

6 2
5 5 3 2 2 2
2 2 1 1 2 1

输出

82

82

说明

纸带如题目描述中的图所示。
所有满足条件的三元组为:(1,3,5),(4,5,6)。
所以纸带的分数为(1+5)∗(5+2)+(4+6)∗(2+2)=42+40=82。

示例2

输入

15 4 5 10 8 2 2 2 9 9 7 7 5 6 4 2 4 2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

输出

1388

1388

备注:

对于第1组至第2组数据,1≤n≤100,1≤m≤5;
对于第3组至第4组数据,1≤n≤3000,1≤m≤100;
对于第5组至第6组数据,1≤n≤100000,1≤m≤100000,且不存在出现次数超过20的颜色;
对于全部10组数据,1≤n≤100000,1≤m≤100000,1≤colori≤m,1≤numberi≤100000。

看题目意思,当x与z同奇同偶时,可以满足,对于同一种颜色的多种不同的组合,

        当有2个同颜色且同奇偶时,设序号为a,b,对应数值为numbera,numberb时       

颜色为1时      

   Sum1=(a+b)*(numbera+numberb)

        当有3个同颜色且同奇偶时,设序号为a,b,c,对应数值分别为numbera,numberb,numberc

颜色为2时       

Sum2=(a+b)*(numbera+numberb)+(a+c)*(numbera+numberc)+(b+c)*(numberb+numberc)

=(a*numbera+b*numberb+c*numberc)+(a+b+c)*(numbera+numberb+numberc)

        当有4个同颜色且同奇偶时,设序号为a,b,c,d,对应数值分别为numbera,numberb,numberc,numberd

颜色为3时

Sum3=2*(a*numbera+b*numberb+c*numberc+d*numberd)+(a+b+c+d)(numbera+numberb+numberc+numberd)

color[tmp][0][i&1]记录序号和

color[tmp][1][i&1]记录数值和

color[tmp][2][i&1]记录序号和对应数值乘积和

i&1可以巧妙的区分当i为偶数和为奇数

偶数和1相与结果为0,奇数和1相与结果1为1

#include<iostream>
using namespace std;
int const num=1e5;
long long cnt[num][2]={0};    //1为奇,0为偶
long long number[num]={0};
long long color[num][3][2]={0};
int main()
{
	int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>number[i];
    for(int i=1;i<=n;i++)
    {
        int tmp;
        cin>>tmp;
        cnt[tmp][i&1]++;
        (color[tmp][0][i&1]+=i)%=10007;
        (color[tmp][1][i&1]+=number[i])%=10007;
        (color[tmp][2][i&1]+=i*number[i])%=10007;
    }
    long long sum=0;
    for(int i=1;i<=m;i++)
        for(int j=0;j<=1;j++)
        {
            sum+=color[i][0][j]*color[i][1][j]+(cnt[i][j]-2)*color[i][2][j];
            sum%=10007;
        }   
    cout<<sum;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值