12、针灸高级技术:提升疗效的关键路径

针灸高级技术:提升疗效的关键路径

针灸作为一种古老的治疗方法,历经数千年的发展,衍生出了众多经典和先进的针刺技术。这些技术不仅丰富了针灸疗法的内涵,还为许多疑难病症的治疗带来了显著的效果。本文将深入探讨一些高级针刺技术,包括穴位探查、双手操作、电针探查、神经刺激、脉动反应与脉动点、血管刺激、阻力针刺以及寒热产生技术等,并详细介绍如何控制针刺感应的传播,以实现针灸治疗的最佳效果。

1. 穴位探查与反复针刺法

在临床实践中,常常会遇到对针刺刺激敏感度较低的患者,难以获得满意的针刺感应和治疗效果。针对这种情况,点探查法(PPM)和反复针刺法(RNTM)是两种有效的策略。

1.1 点探查法(PPM)

PPM 是一种通过轻微移动针尖,在穴位内探索最敏感的层次或中心,以获得最大针刺感应的方法。具体操作步骤如下:
1. 将针刺入穴位一定深度后,若未产生强烈的针刺感应或反应,可在同一深度向四周改变针刺方向,寻找敏感中心。
2. 持续询问或观察患者的反应,一旦出现轻微的针刺感应,立即停止针尖的移动,然后向一个方向捻针,直到无法再捻动为止。
3. 若经过上述操作仍未产生理想的针刺感应,可将针压入穴位更深的层次,重复上述步骤。

PPM 的优点是操作过程温和,对局部组织的损伤较小,是一种反馈修正过程,以获得最佳的针刺感应。然而,该方法较为耗时,需要患者及时报告主观感受。

1.2 反复针刺法(RNTM)

RNTM 又称子午捣臼法,是一种强烈刺激的代表性方法。该方法起源于古代文献《金针诗》,主要通过捻针和提插操作,调整其速度来实现。具体操作步骤如下:
1. 针刺入穴位后,频繁进行捻

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值