1、可解释机器学习:开启透明模型的大门

可解释机器学习:开启透明模型的大门

1. 机器学习可解释性的重要性

机器学习在改善产品、流程和研究方面具有巨大潜力,但计算机通常不会解释其预测结果,这成为了机器学习广泛应用的障碍。可解释性对于开发者调试和改进模型、建立对模型的信任、证明模型预测的合理性以及获取洞察至关重要。随着机器学习的广泛应用,对其可解释性的需求也日益增加。

1.1 可解释性的应用场景

  • 医疗领域 :在医疗设备中,如吗啡泵,算法的不透明可能导致严重的医疗事故。若算法出现错误,由于其复杂性,难以找出问题所在,可能会对患者造成不可挽回的伤害。
  • 金融领域 :在税收亲和预测系统和公民信任评分系统中,模型的预测结果会直接影响个人的生活和社会地位。但由于模型的不透明,当出现错误评分时,人们无法得知原因,也难以进行申诉。
  • 环境领域 :计算机和机器的盲目运行可能导致资源耗尽和气候恶化,而人们却难以阻止,这凸显了理解和控制机器学习模型的重要性。

1.2 可解释性的方法分类

  • 固有可解释模型 :如线性模型和决策树,这些模型本身具有可解释性,其结构和参数可以直接被理解。
  • 模型无关解释方法 :这些方法可以应用于任何机器学习模型,且在模型训练后使用。它们通过改变模型的输入并测量预测输出的变化来解释模型,具有很高的灵活性和强大的功能。

2. 可解释性方法介绍 <

演示了为无线无人机电池充电设计的感应电力传输(IPT)系统 Dynamic Wireless Charging for (UAV) using Inductive Coupling 模拟了为无人机(UAV)量身定制的无线电力传输(WPT)系统。该模型演示了直流电到高频交流电的转换,通过磁共振在气隙中无线传输能量,以及整流回直流电用于电池充电。 系统拓扑包括: 输入级:使用IGBT/二极管开关连接到全桥逆变器的直流电压源(12V)。 开关控制:脉冲发生器以85 kHz(周期:1/85000秒)的开关频率运行,这是SAE J2954无线充电标准的标准频率。 耦合级:使用互感和线性变压器块来模拟具有特定耦合系数的发射(Tx)和接收(Rx)线圈。 补偿:包括串联RLC分支,用于模拟谐振补偿网络(将线圈调谐到谐振频率)。 输出级:桥式整流器(基于二极管),用于将高频交流电转换回直流电,以供负载使用。 仪器:使用示波器块进行全面的电压和电流测量,用于分析输入/输出波形和效率。 模拟详细信息: 求解器:离散Tustin/向后Euler(通过powergui)。 采样时间:50e-6秒。 4.主要特点 高频逆变:模拟85 kHz下IGBT的开关瞬态。 磁耦合:模拟无人机着陆垫和机载接收器之间的松耦合行为。 Power GUI集成:用于专用电力系统离散仿真的设置。 波形分析:预配置的范围,用于查看逆变器输出电压、初级/次级电流和整流直流电压。 5.安装与使用 确保您已安装MATLAB和Simulink。 所需工具箱:必须安装Simscape Electrical(以前称为SimPowerSystems)工具箱才能运行sps_lib块。 打开文件并运行模拟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值