机器学习:python旅游景点人流量分析 客流量预测算法 机器学习 Django框架 毕业设计(源码+文档)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2026年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2026年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

1、项目介绍

技术栈:
python语言、Django框架、机器学习、线性回归预测算法、Echarts可视化

2、项目界面

(1)数据分析大屏

在这里插入图片描述

(2)数据分析1

在这里插入图片描述

(3)数据分析2

在这里插入图片描述

(4)数据中心

在这里插入图片描述

(5)人流量预测
在这里插入图片描述

(6)人流量预测2
在这里插入图片描述
(7)个人中心
在这里插入图片描述

(8)注册登录
在这里插入图片描述

(9)后台管理

在这里插入图片描述

3、项目说明

一、预测
sysuser/views.py

算法:线性回归(Linear Regression)
原理:基于Scikit-learn库的LinearRegression类实现,适用于通过连续型特征(评分、价格)和编码后的分类特征(景点等级),预测连续型目标(人流量)。

核心流程:

  1. 数据获取与预处理:从tourist数据库表读取数据,删除冗余的describe列;填充景点等级(level)空值为“0A”,将评分(score)、价格(price)、人流量(sales)转为数值型,删除缺失值。
  2. 分类特征编码:用LabelEncoder将“0A”“1A”等文本型等级(level)转为数值,适配模型输入。
  3. 数据拆分与标准化:选level“score”“price”为特征(X)、sales为人流量目标(y);按8:2拆分训练/测试集,用StandardScaler标准化特征,消除量纲影响。
  4. 模型训练:用训练集拟合线性回归模型,学习特征与人流量的线性关系。
  5. 模型评估:通过均方误差(MSE)、均方根误差(RMSE)评估模型在测试集上的预测误差。
  6. 用户输入预测:接收前端传入的等级、评分、价格,重复编码/标准化处理后,用训练好的模型预测人流量,结果取整后返回页面。

摘要
随着信息技术的发展,大数据已成为推动各行各业转型升级的重要力量。在旅游业中,大数据的应用能够帮助管理者更好地理解游客行为模式,预测人流趋势,从而制定科学的管理策略。景点人流量作为反映旅游热度的重要指标,其有效分析与管理对于缓解拥堵、提升服务质量具有重要意义。
当前,国内外已有不少学者和机构对景点人流量分析进行了广泛研究,主要集中在数据采集、模型构建与预测分析等方面。然而,现有研究多侧重于单一数据源或传统统计方法,难以全面反映大数据时代的复杂性和动态性。因此,如何充分利用大数据技术,整合多源数据,实现更加精准、高效的人流量分析,成为当前研究的热点和难点。
本文基于大数据技术,提出了一种综合性的景点人流量分析系统。该系统通过集成多源数据,运用先进的数据挖掘与机器学习算法,实现对景点人流量的实时监测、历史分析与未来预测。同时,本文还针对系统的性能、强壮性、逻辑性和安全性进行了全面测试与优化,确保了系统的稳定性和可靠性。本研究为旅游业的人流量管理提供了新思路和新方法,具有较高的理论价值和实践意义。

关键词:大数据,景点人流量,分析系统,数据挖掘,机器学习

4、核心代码



def predict(request):
    if request.method == 'POST':
        # 从数据库读取数据到csv

        import pandas as pd
        from sqlalchemy import create_engine
        import pymysql
        from project.settings import DATABASE_NAME, DATABASE_USER, DATABASE_PSW, DATABASE_PORT, \
            DATABASE_HOST

        db_host = DATABASE_HOST
        db_username = DATABASE_USER
        db_password = DATABASE_PSW
        db_port = DATABASE_PORT
        db_name = DATABASE_NAME

        conn = pymysql.connect(host=db_host, user=db_username, password=db_password, db=db_name, port=db_port)

        engine = create_engine(f'mysql+pymysql://{db_username}:{db_password}@{db_host}:{db_port}/{db_name}')

        # 从数据库读取数据到 DataFrame
        read_data = pd.read_sql('tourist', con=engine)
        data = read_data.copy()
        data.drop(['describe'], axis=1, inplace=True)
        data['level'] = data['level'].fillna('0A')
        data['score'] = data['score'].astype(float)

        def convert_to_numeric(series):
            return pd.to_numeric(series, errors='coerce')

        data['score'] = convert_to_numeric(data['score'])
        data['price'] = convert_to_numeric(data['price'])
        data['sales'] = convert_to_numeric(data['sales'])
        data.dropna(inplace=True)


        #导包
        import pandas as pd
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_squared_error, r2_score

        # 编码分类变量
        label_encoder = LabelEncoder()
        data['level'] = label_encoder.fit_transform(data['level'].astype(str))

        # 特征选择
        features = ['level', 'score', 'price']
        X = data[features]
        y = data['sales']

        # 数据分割
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

        # 特征标准化
        scaler = StandardScaler()
        X_train = scaler.fit_transform(X_train)
        X_test = scaler.transform(X_test)

        # 模型训练 (线性回归)
        model = LinearRegression()
        model.fit(X_train, y_train)

        # 预测
        y_pred = model.predict(X_test)

        # 模型评估
        mse = mean_squared_error(y_test, y_pred) / 1000000
        rmse = mse ** 0.5
        r2 = r2_score(y_test, y_pred)
        print(f'均方误差 (MSE): {mse}')
        print(f'均方根误差 (RMSE): {rmse}')
        # print(f'R²: {r2}')
        level = request.POST.get('level')
        price = request.POST.get('price')
        score = request.POST.get('score')
        try:
            # 创建一个 DataFrame 来存放单条数据
            new_data = pd.DataFrame({
                'level': [level],  # 替换为实际的 level
                'score': [score],  # 替换为实际的 score
                'price': [price]  # 替换为实际的 price
            })

            new_data['level'] = label_encoder.transform(new_data['level'])

            # 特征选择
            features = ['level', 'score', 'price']
            X_new = new_data[features]

            # 标准化
            X_new = scaler.transform(X_new)

            # 预测
            y_pred = model.predict(X_new)
            y_pred = round(y_pred[0])
            print(f'预测人流量: {y_pred}')

            return render(request, 'html/predict.html', locals())
        except Exception as e:
            print(e)
            y_pred = '错误:'+str(e)
            return render(request, 'html/predict.html', locals())
    else:
        return render(request, 'html/predict.html', locals())

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值