Python豆瓣电影可视化系统 电影数据爬虫 数据清洗+数据可视化 Flask+requests (MySQL+Echarts 源码+文档)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2026年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

  • 技术栈:Python语言、Flask框架、MySQL数据库、requests爬虫技术、Echarts可视化、豆瓣电影数据(核心流程:爬虫采集→数据清洗→可视化展示)
  • 这个项目的研究背景:当前豆瓣电影平台聚集海量电影数据(含制片地区、类型、评分、评论人数等),但数据以分散形式存在,人工采集与整理效率极低,且缺乏直观的可视化呈现——用户难以快速把握“不同地区电影占比”“年份产量趋势”“评分与评论人数关联”等核心信息,导致电影数据的价值无法有效发挥,亟需一套“从数据获取到可视化分析”的一体化系统解决这些痛点。
  • 这个项目的研究意义:技术层面,通过requests爬虫实现豆瓣电影数据高效采集,借助MySQL保障数据结构化存储,依托Echarts实现多维度可视化,Flask框架搭建轻量稳定的Web交互环境,解决传统数据处理“散、慢、难展示”的问题;用户层面,为电影爱好者、研究者提供直观的数据分析结果(如地区分布、类型趋势),降低数据理解门槛;行业层面,为电影市场分析提供便捷工具,助力快速洞察市场动态,具备实际应用价值。

2、项目界面

(1)电影制片地区饼图分析
在这里插入图片描述

(2)电影数据信息
在这里插入图片描述

(3)首页

在这里插入图片描述

(4)电影数据漏斗图分析

在这里插入图片描述

(5)饼图分析

在这里插入图片描述

(6)电影类型数据柱状图

在这里插入图片描述

(7)导演作品柱状图分析

在这里插入图片描述

(8)评分与评论人数散点图

在这里插入图片描述

(9)每年电影数量折线图

在这里插入图片描述

(10)数据采集页面

在这里插入图片描述

3、项目说明

本项目是基于Python语言开发的豆瓣电影数据可视化分析系统,以Flask为Web框架、MySQL为数据存储载体、requests为爬虫工具、Echarts为可视化引擎,核心实现“豆瓣电影数据采集→清洗→存储→多维度可视化分析”的完整流程,旨在解决电影数据分散、分析低效、展示不直观的问题。

(1)数据采集与预处理

系统通过requests爬虫技术定向采集豆瓣电影平台数据:首先分析豆瓣电影页面结构,编写爬虫逻辑抓取关键信息(含电影名称、制片地区、类型、评分、评论人数、导演、上映年份等);采集到的原始数据需经过清洗处理——过滤无效数据(如缺失核心字段的电影记录)、去重(排除重复抓取的条目)、格式标准化(统一日期、评分等字段格式),确保数据质量;最终将清洗后的结构化数据存储至MySQL数据库,为后续可视化分析提供稳定、可靠的数据源,同时支持通过“数据采集页面”手动触发爬虫任务,实时更新数据库中的电影数据,保障信息时效性。

(2)数据可视化分析(Echarts核心应用)

依托Echarts可视化工具,系统将MySQL中的电影数据转化为多种直观图表,覆盖多维度分析需求:

  • 饼图分析:含“电影制片地区饼图”与通用饼图,分别展示不同地区电影的数量占比(如国产、欧美、日韩电影占比)、特定维度分布(如各评分区间电影占比),帮助快速把握整体结构;
  • 柱状图分析:包括“电影类型数据柱状图”(对比不同类型电影的数量/平均评分)、“导演作品柱状图”(统计热门导演的作品数量),清晰呈现类别间差异;
  • 折线图分析:“每年电影数量折线图”直观展示历年电影产量变化趋势,助力洞察行业发展动态;
  • 散点图分析:“评分与评论人数散点图”探索两者关联关系(如高评分电影是否伴随高评论量),挖掘数据背后的潜在规律;
  • 漏斗图分析:“电影数据漏斗图”可展示电影从“采集条目→有效数据→高评分(如8分以上)条目”的筛选过程,呈现数据层层筛选后的核心结果。

(3)系统架构与功能模块

  • 架构设计:采用Flask轻量级Web框架搭建前后端交互桥梁——后端负责爬虫调度、数据读写(与MySQL交互)、接口开发,向前端提供标准化数据;前端通过HTML/CSS构建界面(如首页、电影数据信息页),调用Echarts接口加载并渲染图表,实现数据可视化展示;
  • 核心功能模块
    1. 首页:作为系统入口,汇总核心可视化图表与功能入口,方便用户快速定位所需分析维度;
    2. 电影数据信息页:展示单部电影的详细信息(含基本属性、评分、导演等),支持查看具体条目详情;
    3. 数据采集页面:提供爬虫任务触发按钮,支持用户手动更新数据,灵活应对豆瓣电影数据更新需求;
    4. 多维度可视化页:按“地区、类型、年份、导演”等维度分类展示图表,用户可按需查看对应分析结果。

(4)用户价值与应用场景

系统面向两类核心用户:

  • 普通电影爱好者:可通过图表快速了解电影市场趋势(如近年产量、热门类型)、筛选高价值电影(如高评分+高评论量作品),降低选片时间成本;
  • 电影研究者/从业者:可借助多维度数据(如地区分布、类型趋势)辅助市场分析,为内容创作、发行策略制定提供数据参考。

整体而言,系统通过技术整合实现了电影数据从“无序采集”到“有序分析”再到“直观展示”的闭环,操作简洁、分析维度全面,兼具实用性与易用性,为电影数据的高效利用提供了可靠解决方案。

4、核心代码



from bs4 import BeautifulSoup
import re
import urllib.request,urllib.error
import xlwt
import time
import random
import sqlite3

def main():
    baseurl = "https://movie.douban.com/top250?start="
    #1.爬取网页
    datalist = getData(baseurl)
    savepath='豆瓣Top250.xls'
    saveData(datalist,savepath)
    # askURL(baseurl)
#爬取网页
def getData(baseurl):
    #存储详情页链接
    href_list =[]
    #存储所有电影的信息
    datalist = []
    '''
    0*25=0
    1*25=25
    ...
    '''
    #调用获取页面信息的函数 10次
    for i in range(0,10):
        time.sleep(random.random() * 5)
        url = baseurl + str(i*25)
        #保存网页源码
        html = askURL(url)

        #2.逐一解析数据
        bs = BeautifulSoup(html,'html.parser')
        #找到所有的class=item的div,并保存到列表中
        item_list = bs.find_all('div',class_='item')  #查找符合要求的字符串
        for item in item_list:
            #正则表达式是字符串匹配,需要把item转化为字符串
            item = str(item)
            #提取详情页链接
            detail_href = re.findall(r'<a href="(.*?)">',item)[0]
            # print(detail_href)
            href_list.append(detail_href)


    # print(href_list)
    #         print(item)
    for href in href_list:
        time.sleep(random.random() * 5)
        #获取详情页源码
        detail_html = askURL(href)
        # print(detail_html)
        #保存一部电影的所有信息
        data = []
        # 获取片名
        title = ''
        try:
            title = re.findall(r'"v:itemreviewed">(.*?)</span>', detail_html)[0]
        except:
            print("获取片名失败")
        data.append(title)
        # 获取导演名
        director = ''
        try:
            director = re.findall(r'"v:directedBy">(.*?)</a>', detail_html)[0]
        except:
            print("获取导演信息失败")
        data.append(director)
        # print(director)

        # 获取第一编剧
        scriptwriter = ''
        try:
            scriptwriter = re.findall(r"编剧.*?: <span class='attrs'><a href=.*?>(.*?)</a>", detail_html)[0]
        except:
            print("获取编剧信息失败")
        data.append(scriptwriter)
        # 获取第一主演
        star = ''
        try:
            star = re.findall(r'rel="v:starring">(.*?)</a>', detail_html)[0]
        except:
            print("获取演员信息失败")
        data.append(star)
        # print(star)

        # 获取类型
        filmtype = ''
        try:
            filmtype = re.findall(r'"v:genre">(.*?)</span>', detail_html)[0]
        except:
            print("获取电影类型信息失败")
        data.append(filmtype)
        # print(filmtype)

        # 获得制片国家
        country = ''
        try:
            country = re.findall(r'<span class="pl">制片国家/地区:</span> (.*?)<br/>', detail_html)[0]
        except:
            print("获取制片国家失败")
        data.append(country)
        # print(country)

        # 获得语言
        lag = ''
        try:
            lag = re.findall(r'<span class="pl">语言:</span> (.*?)<br/>', detail_html)[0]
        except:
            print("获取语言失败")
        data.append(lag)
        # print(lag)

        # 获得片长
        runtime = ''
        try:
            runtime = re.findall(r'<span property="v:runtime" content="(.*?)">', detail_html)[0]
        except:
            print("获取片长失败")
        data.append(runtime)
        # print(runtime)

        # 获得评分 ----------------
        score = ''
        try:
            score = re.findall(r'property="v:average">(.*?)</strong>', detail_html)[0]
        except:
            print("获取评分失败")
        data.append(score)
        # print(score)

        # 获得评价人数
        num = ''
        try:
            num = re.findall(r'<span property="v:votes">(.*?)</span>人评价', detail_html)[0]
        except:
            print("获取评价人数失败")
        data.append(num)
        # print(num)

        year = ''
        try:
            year = re.findall(r'<span class="year">(.*?)</span>', detail_html)[0]
        except:
            print("获取上映日期失败")
        data.append(year)
        # print(year)

        description = ''
        try:
            description = re.findall(r'<meta property="og:description" content="(.*?)" />', detail_html)[0]
        except:
            print("获取简介失败")
        data.append(description)
        # print(description)

        image = ''
        try:
            image = re.findall(r'<meta property="og:image" content="(.*?)" />', detail_html)[0]
        except:
            print("获取图片失败")
        data.append(image)
        # print(image)
        print(data)
        datalist.append(data)
    # print(datalist)
    return datalist

#得到指定一个URL的网页内容
def askURL(url):
    #模拟浏览器头部信息,向豆瓣服务器发送消息
    # headers = {
    #     'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36'
    # }
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.5060.66 Safari/537.36 Edg/103.0.1264.44'
    }
    content = ''
    #请求对象
    req = urllib.request.Request(url,headers = headers)
    try:
        #得到响应信息
        response = urllib.request.urlopen(req)
        #读取响应信息
        content = response.read().decode('utf-8')
        # print(content)
    except urllib.error.URLError as e:
        #hasattr 检查指定属性是否存在
        if hasattr(e,'code'):
            print(e.code)
        if hasattr(e,'reason'):
            print(e.reason)
    return content


def saveData(datalist,savepath):
    # 创建workbook对象
    workbook = xlwt.Workbook(encoding='utf-8',style_compression=0)
    # 创建工作表
    worksheet = workbook.add_sheet('豆瓣电影Top250',cell_overwrite_ok=True)
    col = ('电影名','导演','编剧','主演','类型','制片国家','语言','片长','评分','评价人数','上映日期','简介','图片')
    for i in range(0,13):
        # 写入表头
        worksheet.write(0,i,col[i])
    for i in range(0,250):
        print('第%d条'%(i+1))
        data = datalist[i]
        for j in range(0,13):
            worksheet.write(i+1, j, data[j])
    workbook.save(savepath)  #保存

if __name__ == '__main__':
    main()

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

在这里插入图片描述

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值