- 博客(2629)
- 收藏
- 关注
原创 企业级YOLOv7轻量化部署:TensorRT加速+边缘计算,支撑百万级并发
摘要:企业级YOLOv7高性能部署全链路优化方案 针对企业级场景中YOLOv7目标检测模型面临的模型体积大、推理延迟高、并发能力弱三大核心痛点,本文提出"轻量化改造+TensorRT加速+边缘集群架构"全链路优化方案。通过结构化剪枝、INT8量化和冗余算子裁剪实现模型体积压缩85%,显存占用降至64MB;利用TensorRT的算子融合和动态批处理技术将GPU推理延迟从8ms降至1ms;设计边缘节点集群架构,实现单集群(8台Jetson AGX Orin)百万级并发处理能力。实测表明优化后
2026-01-25 07:10:59
104
原创 Python游戏爬虫实战:爬取Steam/Wegame游戏数据(价格+好评率+折扣)
本文介绍了一个游戏折扣信息爬虫的实战开发过程。针对Steam和Wegame平台,作者使用Python技术栈(requests+lxml+pandas)实现了批量爬取热销游戏的价格、折扣和好评率数据,并支持价格对比和折扣分析功能。文章详细拆解了技术选型、反爬策略、数据清洗和可视化分析的全流程,提供可直接复用的代码。核心亮点包括:针对Steam的反爬处理、多平台数据统一存储、以及"高折扣+高好评"游戏的智能筛选功能,帮助游戏爱好者精准获取优惠信息。该项目具有新手友好、实战性强等特点,代码开箱
2026-01-25 07:10:49
290
原创 Python美食爬虫实战:爬取下厨房/美食杰菜谱,一键生成离线HTML/PDF美食手册
本文介绍了一个实用的美食菜谱爬虫项目,帮助用户批量获取下厨房和美食杰的菜谱数据,并生成可离线使用的HTML/PDF手册。项目采用Python技术栈(requests+lxml+pandas+Jinja2),从需求分析、技术选型到代码实现全流程讲解,重点解决菜谱数据爬取、清洗和离线手册生成问题。核心功能包括:爬取家常菜和地方菜数据、自动去重分类、生成带搜索功能的HTML手册和可打印PDF,适配手机/平板离线查看。代码完整开源,新手友好,强调实用性和可落地性。
2026-01-25 07:10:40
49
原创 Python体育爬虫实战:一站式爬取NBA/足球赛事数据(比分+赛程+多维度统计分析)
本文分享了体育数据爬虫实战经验,针对NBA和足球赛事数据获取需求,提供了一套完整的Python解决方案。文章详细介绍了从环境配置、反爬策略到具体实现的全流程,包括: 技术选型:使用requests+lxml高效爬取,配合pandas进行数据处理,sqlite3实现本地存储 反爬技巧:随机UA生成、请求延迟、异常重试等实用方法 数据源分析:选择ESPN和懂球帝作为数据源,解析其页面结构特点 核心实现:给出NBA赛事爬取的完整代码,包含数据提取、清洗和存储逻辑 项目特色在于: 新手友好,代码可直接复用 兼顾爬取
2026-01-25 07:10:05
102
原创 Python爬虫实战:Playwright无头浏览器 绕过JS反爬(金融场景版)
摘要:本文针对金融数据采集中的JS反爬挑战,提出基于Playwright的高效解决方案。相比Selenium,Playwright具备更强的反爬伪装能力、原生无头模式支持和自动等待机制,能有效应对金融平台常见的浏览器指纹检测、动态加密渲染等反爬手段。文章详细拆解了Playwright环境搭建、无头配置优化及反爬伪装策略,并针对股票加密行情页、基金登录页等典型金融场景,提供动态数据提取的实战方案。通过整合随机UA、分辨率模拟等增强措施,该方案可直接集成到分布式架构中,实现千万级金融数据的安全采集。
2026-01-25 07:09:54
74
原创 Python爬虫实战:JSON数据解析与Ajax异步请求接口爬取(金融场景版)
本文针对金融数据采集场景,提出基于Ajax接口的高效爬取方案。相比传统HTML解析,直接对接JSON接口可提升3-5倍效率,更适合千万级数据采集需求。文章详细拆解金融Ajax接口特性(动态加密参数、高频更新、严格反爬),提供从接口定位、请求构造到JSON解析的完整流程,并给出可直接集成到分布式架构的Python实现代码。重点解决金融场景下的动态参数处理、反爬对抗等核心问题,实现"接口爬取-数据解析-分布式集成"的闭环方案,显著提升金融数据采集的稳定性和效率。
2026-01-25 07:09:47
212
原创 YOLOv10 PSA模块实操:全局特征建模,遮挡目标检测漏检率下降8个百分点
工业遮挡目标检测的YOLOv10 PSA解决方案 针对工业场景中零件堆叠/遮挡导致的检测难题,本文提出基于YOLOv10 PSA模块的改进方案。通过金字塔分割注意力机制,PSA模块实现了多尺度特征融合与全局上下文建模,有效解决了原生YOLOv10在遮挡场景下的特征碎片化问题。核心创新包括:1)多尺度金字塔分割捕捉不同遮挡程度的特征;2)注意力加权强化未遮挡区域特征;3)工业级数据增强策略模拟真实遮挡场景。实验表明,该方法将工业遮挡目标的漏检率从13%降至5%,mAP@0.5提升至94.2%,同时保持35FP
2026-01-25 07:09:28
314
原创 YOLOv8实战项目:智慧农业病虫害检测,从数据集到模型落地
YOLOv8智慧农业病虫害检测的核心是“农业场景定制化”:从数据集构建(田间实拍+农业增强)→ 训练调优(Focal Loss+小目标锚框)→ 轻量化(INT8量化+剪枝)→ 边缘部署(树莓派/农业AI盒子),全链路适配农业生产的低算力、复杂背景、实时检测需求,最终实现树莓派22FPS推理、病虫害漏检率≤5%,完全满足大田/大棚的病虫害巡检需求。
2026-01-25 07:09:21
160
原创 YOLOv8n轻量化实战:10分钟打通实时摄像头目标检测,附参数调优与避坑指南
本文介绍了如何快速入门YOLOv8目标检测框架,通过摄像头实战实现实时检测。YOLOv8凭借轻量化架构和跨平台优势,是新手入门的理想选择。文章详细讲解了环境搭建(1分钟完成)、核心代码逻辑(3分钟掌握)以及性能调优技巧(3分钟进阶),提供可直接运行的代码示例。重点包括:模型选择(优先yolov8n.pt)、摄像头参数优化、置信度阈值调整、检测类别指定等实用技巧,帮助开发者快速实现10-15FPS的实时检测效果,并针对不同场景提供优化建议。
2026-01-25 07:09:14
187
原创 YOLO26的“统一架构”:目标检测、分割、姿态估计一网打尽
YOLO26统一架构创新性地通过共享骨干网络、动态特征融合和自适应损失平衡,实现了单模型同时完成目标检测、实例分割和姿态估计三大任务。其核心技术包括:优化的C2f-M骨干网络实现特征复用,PFPN金字塔动态适配多任务特征需求,以及ProgLoss损失函数随训练进程自动调整任务权重。相比传统多模型叠加方案,YOLO26在保持各任务精度的同时,推理速度提升52%,部署成本降低80%,真正实现了"一次推理,全任务输出"的高效范式。这一设计不仅大幅降低了工程复杂度,更为端到端计算机视觉系统提供了
2026-01-25 07:09:06
314
原创 YOLO26:彻底告别NMS!端到端无后处理的目标检测新范式
训练命令(STAL标签分配+ProgLoss默认启用)batch=16,imgsz=640,optimizer="musgd", # 使用MuSGD优化器loss="progloss" # 使用ProgLoss损失函数YOLO26的无NMS端到端设计不仅是技术上的突破,更是目标检测领域的一次范式革命。它解决了长期困扰开发者的延迟、超参和部署问题,同时通过STAL、ProgLoss和MuSGD等创新技术实现了精度与速度的双重提升。
2026-01-24 08:20:35
246
原创 YOLO26 vs YOLOv8:速度提升43%的背后,Ultralytics的全链路优化逻辑
YOLO26相比YOLOv8实现43%速度提升的核心在于无NMS端到端架构和全链路效率优化。移除NMS后处理贡献60%的速度增益,其余来自检测头重构、特征融合轻量化等优化。关键突破包括: 采用STAL标签分配彻底消除NMS需求 精简架构移除DFL模块并优化特征融合 引入MuSGD优化器和ProgLoss训练策略 底层推理引擎优化算子融合和内存管理 实测显示,YOLO26n在CPU推理中平均耗时13.9ms,比YOLOv8n快43%,同时mAP提升5.7个百分点,实现了速度与精度的双重突破。
2026-01-24 08:20:29
279
原创 手机、无人机都能跑!YOLO26跨平台部署实战指南(Android/iOS/无人机边缘端)
YOLO26凭借无NMS端到端设计、43%速度提升和跨平台适配性,成为边缘端目标检测新标杆。针对手机和无人机两大核心边缘平台,文章提出通用部署流程:模型轻量化导出(ONNX格式)、各平台推理引擎适配、硬件优化及真机测试。YOLO26通过移除DFL模块、精简架构设计,模型体积比YOLOv8小30%,内存占用降低40%。部署核心包括FP16/INT8量化导出,并针对NVIDIA Jetson无人机(TensorRT优化)和消费级ARM无人机(ONNX Runtime加速)提供专属方案,实现"一次导出,
2026-01-24 08:20:23
103
原创 从YOLOv5到YOLO26:目标检测模型的“效率革命”五年回顾
**摘要:2020-2025年,YOLO系列从v5到v26完成了从实验室模型到工业级解决方案的转型,核心围绕边缘设备效率优化。YOLOv5首次平衡精度与效率,实现轻量化突破;2022-2024年v7-v11通过架构精简、多任务融合等持续优化;2025年YOLO26实现无NMS端到端设计,推理速度提升300%,模型体积压缩80%,并支持统一多任务架构与跨平台适配。这五年演进体现了从算法竞赛导向到工业落地思维的转变,YOLO26的无NMS设计成为效率革命的里程碑。
2026-01-24 08:20:17
211
原创 YOLO系列小目标检测终极方案:YOLO26 STAL vs YOLOv12注意力 vs YOLOv8动态锚框
小目标检测技术对比:YOLO26 STAL、YOLOv12注意力与YOLOv8动态锚框 小目标检测面临特征表达不足、标签失衡和漏检三大挑战。2023-2026年,Ultralytics推出三大优化方案:YOLOv8采用动态锚框+TAL标签分配,YOLOv12引入全注意力架构,YOLO26创新性提出STAL小目标感知标签分配。三者分别从框生成、特征增强和训练策略角度提升小目标检测性能。测试显示,YOLO26 STAL在COCO小目标检测上mAP达40.9%-47.8%,推理速度最快且部署友好;YOLOv12在
2026-01-24 08:20:12
559
原创 Python爬虫实战【汽车类】:爬取汽车之家_易车网 车型配置+油耗+价格 及性价比筛选
本文提出基于Selenium的汽车数据爬取方案,针对汽车之家、易车网等平台动态渲染、数据分散的特点,实现从车型列表到详情页的完整数据采集。方案包含: 技术适配:利用Selenium模拟浏览器操作,解决分页懒加载、动态渲染、反爬拦截等痛点,通过随机UA、分辨率伪装提升爬取成功率。 数据采集流程:分两步爬取-先获取列表页基础信息(车型、价格),再深入详情页提取配置参数(ESP、倒车影像)和油耗数据(NEDC/WLTC标准)。 实用价值:提供可直接复用的代码模板,包含浏览器初始化、反爬配置等核心代码,并给出性价比
2026-01-24 08:19:55
337
原创 Python爬虫实战【财经类】:爬取股票_基金_期货实时数据 行情监控+走势分析
本文介绍了一种基于Selenium的财经数据爬取方案,针对东方财富网、同花顺等主流平台的股票、基金、期货实时行情数据。文章首先分析了财经平台数据动态加载、反爬机制严格等特点,提出采用Selenium模拟浏览器交互,配合pandas、matplotlib等工具实现数据爬取、监控和分析。核心内容包括:1) 技术栈配置,强调浏览器伪装和反爬措施;2) 实战演示股票实时行情与K线数据爬取流程,提供可复用的代码模板。该方案解决了动态行情加载、实时同步等难点,适合个人投资者搭建数据监控系统。
2026-01-24 08:19:48
252
原创 Python招聘爬虫实战:爬取脉脉/拉勾网(大厂内推+薪资爆料+面试经验)
本文介绍了一个针对大厂招聘信息的爬虫工具,可批量爬取脉脉和拉勾网的招聘数据,包括内推岗位、薪资爆料和面试经验,并自动分析薪资分布和高频考点。文章详细拆解了从环境搭建到数据爬取、清洗和分析的全过程,提供了可直接复用的代码,适合新手学习。核心功能包括:稳定爬取脉脉内推/薪资/面经板块、拉勾网内推岗位信息,自动清洗数据并生成结构化文档,以及薪资分布统计和面试考点词云可视化。技术选型注重实用性和新手友好性,使用requests+lxml进行爬取,pandas+sqlite3进行数据处理,并提供了反爬防护措施。最终生
2026-01-24 08:19:37
349
原创 Python办公学习爬虫实战:合法获取知网/万方/维普论文文献(合规版)
本文介绍了一种合法合规的方法,利用Python爬虫获取知网、万方、维普等平台的开放获取(OA)论文资源。文章重点强调必须遵守《著作权法》,仅爬取平台公开的OA论文元数据(标题、摘要、作者等)和可免费下载的全文。提供了技术选型建议(requests+lxml+pandas等工具),详细说明了各平台的合法免费获取渠道,并给出了环境配置和合规请求函数的封装代码。最后以知网OA论文专区为例,展示了如何合法爬取论文列表信息和下载公开论文的具体实现代码。全文严格遵守robots协议,控制请求频率,确保学术数据获取的合法
2026-01-24 08:19:31
160
原创 Python小说漫画爬虫实战:合规爬取免费资源(自动更新+离线阅读)
本文介绍了一个Python爬虫项目,用于合规爬取公开免费的小说和漫画资源,实现自动更新和离线阅读功能。项目严格遵循著作权法,仅针对作者或平台明确标注为免费的资源进行爬取,严禁涉及付费或盗版内容。 技术方案采用requests、BeautifulSoup等库实现数据抓取和解析,通过定时任务自动检测更新,并将内容保存为TXT、EPUB或HTML格式供离线阅读。核心功能包括: 小说章节自动更新与TXT/EPUB格式转换 漫画图片下载与HTML阅读页面生成 本地文件管理和更新记录保存 项目强调合规性,提供了详细的免
2026-01-24 08:19:24
380
原创 拿来即用!Python爬虫实战:破解User-Agent封禁+IP代理池,稳定爬取资讯网站无限制
本文针对资讯网站常见的UA校验和IP封禁反爬机制,提出了一套基于Scrapy框架的完整解决方案。通过构建随机UA池和动态IP代理池,结合请求间隔随机化策略,有效突破反爬限制。方案采用fake-useragent自动生成多浏览器UA,并实现代理IP的获取、校验、存储闭环管理。文中提供了详细的Python代码实现,包括UA中间件集成和代理池核心逻辑,确保爬取效率和稳定性。该方案环境配置简单,依赖版本明确,适合新手快速落地实施,实现资讯网站数据的稳定采集与结构化存储。
2026-01-23 07:29:00
315
2
原创 Python爬虫实战【教育类】:爬取考研_考公_教资真题 题库+答案+解析 自动整理
本文提出了一种基于Selenium的自动化爬取方法,针对粉笔职教、中公教育、华图教育等主流教育平台的考研、考公、教资真题进行高效采集与整理。通过模拟浏览器交互解决动态加载题库和分页展示问题,利用pandas和python-docx等工具实现真题数据的结构化处理,最终生成适配个人备考需求的题库文档。该方法特别优化了真题与解析匹配、多题型适配、自动分类归档等核心环节,选用免费公开题库数据源,提供可直接复用的代码模板,为考生提供了一种高效便捷的备考解决方案。
2026-01-23 07:28:53
430
原创 Scrapy分布式爬虫实战:千万级金融行情数据采集全方案
本文针对金融数据规模化采集场景,提出基于Scrapy-Redis的分布式爬虫解决方案。通过Redis集群统一调度任务,多节点协同工作突破单机性能瓶颈,实现千万级股票/外汇行情数据的高效采集。方案覆盖从架构设计、环境部署到代码实现的全链路流程,重点解决金融数据高并发采集、反爬对抗、数据一致性等核心问题。采用Scrapy+Redis+分布式存储的技术栈,支持动态扩容与故障自愈,日均吞吐量可达千万级别,为金融大数据分析提供稳定数据源。
2026-01-23 07:28:29
380
原创 大厂级爬虫工程架构全解析:从采集到可视化的一站式落地方案
Airflow具备强大的DAG工作流编排能力,支持任务依赖配置、定时触发、可视化运维,适合作为调度核心;自定义插件解决爬虫场景个性化需求,Redis用于任务队列缓存与负载均衡。大厂级爬虫系统的核心竞争力,在于“架构设计的前瞻性”与“落地细节的把控力”——既要通过分层解耦、扩展设计支撑业务迭代,也要通过反爬对抗、容错兜底、运维监控保障稳定运行,同时兼顾数据质量与合规性。落地建议:小步快跑迭代:先搭建核心链路(采集+清洗+存储),再逐步完善调度、监控、可视化模块,避免一步到位导致的复杂度失控;
2026-01-23 07:28:20
236
原创 YOLOv10 CIB模块改造:工业零件检测精度提升2.3%,计算量减少36%
本文针对工业零件检测中YOLOv10 CIB模块的计算冗余和小目标检测不足问题,提出CIB-Lite改进方案。通过分组通道融合减少60%计算量,引入轻量空间注意力模块(LSAM)提升小目标检测精度4.1%,并裁剪冗余卷积进一步降低计算量10%。改造后模型在工业零件数据集上mAP提升2.3%至95.7%,计算量减少36%,边缘端推理速度达40FPS。文章详细介绍了CIB-Lite的设计原理、工业数据集的标注规范和专属增强方法,并提供了完整的模块实现代码,为工业场景的目标检测提供了高效解决方案。
2026-01-23 07:27:43
415
原创 YOLOv11(Ultralytics)环境配置保姆级指南:0基础小白也能一次成功(含CPU/GPU双方案)
本文为小白提供YOLOv11环境配置的保姆级教程,包含CPU和GPU双方案。Windows系统下,从Python安装、pip配置到Ultralytics库安装,详细说明每个步骤并附验证方法。重点解决GPU配置难题,包括CUDA、cuDNN版本匹配及安装要点。最后通过PyCharm实战演示本地图片检测和摄像头实时检测代码,确保新手能快速上手YOLOv11目标检测。全文采用"先执行后理解"的方式,避免理论困扰,所有命令行代码可直接复制粘贴,关键步骤配有注意事项和常见问题解决方案。
2026-01-23 07:27:29
538
原创 大厂级YOLOv5多目标跟踪系统:结合DeepSORT,实现行人轨迹追踪
本文提出了一种面向大厂级场景的行人多目标跟踪优化方案,通过YOLOv5检测模型定制和DeepSORT跟踪算法改进,有效解决了传统方法ID切换率高、鲁棒性差等问题。核心创新包括:1)优化卡尔曼滤波参数和ReID特征提取,将ID切换率降至0.8%;2)采用遮挡恢复策略和轨迹缓存,使跟踪丢失率≤3%;3)通过多线程推理和批量处理实现高效部署,单GPU支持32路视频流。实验表明,该系统在智慧园区等场景中准确率达98.5%,边缘设备Jetson AGX Orin可实时处理4路1080P视频流,满足大厂级应用需求。
2026-01-23 07:27:17
417
原创 新手必看!YOLO目标检测入门:彻底搞懂训练/验证/测试的区别(附实战全流程)
本文深入解析YOLO目标检测中训练集、验证集和测试集的核心区别与实操方法。三大数据集必须严格隔离、各司其职:训练集(70%)用于模型学习特征,验证集(20%)调参优化,测试集(10%)最终评估。文章强调数据隔离是避免模型"作弊"的关键,并提供了手动划分和Python脚本自动划分两种实操方案,包含可直接复用的代码。通过7:2:1的标准划分比例和严格的物理/内容隔离要求,确保模型评估客观性,避免实际落地效果不佳的问题。文中还针对不同数据规模给出了比例调整建议,为YOLO开发者提供了清晰的工程
2026-01-23 07:27:08
552
原创 YOLO26工业质检实战落地:无NMS端到端推理+STAL小目标优化,AP提升2.8%(附完整部署代码)
YOLO26工业质检优化方案摘要(149字) 针对工业质检高精度、低延迟、小目标检测需求,YOLO26通过两大创新突破传统YOLO局限:1)无NMS端到端推理架构,采用动态双标签分配和置信度校准,降低20%推理延迟;2)STAL小目标优化模块,融合空间-时序注意力机制,提升小目标AP值4.2%。工业部署实测显示,在汽车零部件缺陷检测中,整体AP提升2.8%至94.5%,推理速度达38FPS。配套工业级数据增强策略,有效解决金属反光、微小缺陷等检测难题,为工业质检提供高效端到端解决方案。
2026-01-23 07:26:51
593
原创 YOLO26工业缺陷检测实战:ProgLoss平衡损失,复杂背景下瑕疵识别率达97.5%
YOLO26针对工业复杂背景缺陷检测提出创新解决方案ProgLoss,通过渐进式加权和难例自适应挖掘,有效解决传统方法在样本不均衡和损失等权问题上的瓶颈。该模型在金属、PCB和注塑件三大工业场景中实现97.5%的平均识别率,比YOLOv12提升8.2%。核心优化包括:1)ProgLoss分阶段动态调整样本权重,前期均衡学习,后期聚焦难例;2)工业背景抑制模块和小目标特征提纯技术。配套工业级数据集处理方案,涵盖6类典型瑕疵,90%为复杂背景难例样本,并设计专属数据增强策略模拟真实工业场景。完整方案包含训练配置
2026-01-23 07:26:44
530
原创 实战封神!Python爬虫攻克动态页面:Selenium+Playwright双引擎爬取某点评网全量数据
摘要:本文介绍了应对动态加载网站(如某点评网)的双引擎爬虫方案,结合Selenium和Playwright优势实现数据抓取。文章首先分析了普通爬虫失效的原因,包括异步加载、JS渲染依赖和反爬机制。随后详细讲解了环境配置、核心架构设计,并提供了Selenium引擎的具体实现代码,包括反爬策略和搜索流程。该方案能有效解决动态页面数据获取难题,具有实战参考价值。(149字)
2026-01-22 08:11:11
289
原创 Python爬虫实战:爬取体育赛事比分 实时更新+结果统计
本文分享了一套基于Python的体育赛事实时比分爬虫工具,通过抓取API接口实现自动化数据采集与分析。系统采用requests库获取比分数据,利用pandas进行统计计算,配合schedule定时更新,可自动生成胜负率、场均进球等关键指标并导出Excel。文章详细介绍了从抓包分析到数据可视化的全流程,包括API接口定位、JSON解析、反爬策略应对等实战技巧,帮助体育爱好者摆脱手动统计的繁琐操作,实现赛事数据的智能跟踪与分析。该工具支持多赛事并行监控,适用于足球、篮球等主流体育比赛的数据采集需求。
2026-01-22 08:10:59
161
原创 YOLOv12轻量化部署实测:A²架构压缩70%体积,移动端稳跑45FPS(含完整量化教程)
YOLOv12轻量化部署指南:移动端实时目标检测优化方案 本文详细介绍了YOLOv12在移动端的轻量化部署方案。针对传统YOLO模型在移动设备上体积大、速度慢的痛点,YOLOv12通过创新的A²架构实现了显著优化:自适应注意力模块减少72%参数,动态通道裁剪降低70%体积,轻量化特征融合提升22%推理速度。文章提供完整的部署流程,包括: 模型剪枝(40%剪枝率+15轮微调) 结构精简(移除冗余分支+调整输入尺寸) INT8量化(精度损失仅2%,帧率提升至45FPS) 实测在骁龙8 Gen2手机上,优化后的Y
2026-01-22 08:10:49
177
原创 YOLOv12智慧农业实战:田间病虫害自动识别,准确率92.3%(附数据集+部署方案)
YOLOv12通过农业场景专属优化,实现了田间病虫害识别准确率92.3%的突破,解决了传统人工巡检的效率低、误判率高的痛点,为智慧农业的规模化落地提供了可行方案。
2026-01-22 08:10:44
232
原创 YOLOv10端到端检测实战:双标签分配无NMS,自动驾驶场景延迟降低42%
YOLOv10端到端自动驾驶目标检测方案 摘要:针对自动驾驶实时目标检测的严苛需求,YOLOv10创新性地提出端到端检测架构,通过双标签分配策略直接输出最终检测结果,彻底摒弃NMS后处理步骤。在KITTI数据集上实现延迟降低42%、mAP@0.5提升3.1%的双重突破。关键技术包括:1)主标签+辅助标签的双分配机制,从源头减少冗余框;2)预测头重构与置信度校准,直接输出唯一目标框。实测在NVIDIA Jetson Xavier NX平台实现55FPS稳定帧率,完全满足L2-L3级自动驾驶实时性要求。本文提供
2026-01-22 08:10:29
201
原创 YOLOv12小目标检测实战:超32×32像素缺陷识别,召回率突破90%(对比YOLOv9实测)
工业小目标缺陷检测是工业质检中的核心挑战,YOLOv12针对32×32像素以下小目标的检测性能显著优于YOLOv9。本文通过对比分析YOLOv12在小目标特征提取、锚框匹配和损失函数三方面的优化,提出针对PCB缺陷等工业场景的解决方案。关键改进包括:新增小目标特征金字塔(SFP)模块增强特征提取能力,自适应锚框策略提升匹配准确率,以及加权EIoU损失函数降低定位误差。实验表明,YOLOv12在PCB缺陷数据集上对小目标的召回率提升15%,达到90%以上。文章详细介绍了工业缺陷数据集的处理方法、数据增强策略和
2026-01-22 08:10:21
275
原创 YOLOv8树莓派轻量化部署终极指南:从模型压缩到底层加速,稳定跑满80FPS
本文详细介绍了在树莓派上部署YOLOv8模型并实现80FPS高性能推理的完整方案。针对树莓派算力有限的问题,提出了"模型轻量化→推理引擎优化→工程级调优→硬件适配"全链路优化策略。通过结构化剪枝、INT8量化和模型精简,将模型体积从6.2MB压缩至1.8MB,计算量降低65%。采用OpenVINO推理引擎,结合CPU核心绑定和异步推理队列等优化手段,最终在树莓派4B上实现了80FPS的稳定运行,准确率损失控制在3%以内。文章提供了详细的硬件选型建议、环境配置说明和可直接复用的代码,为边缘
2026-01-22 08:10:13
392
原创 YOLO目标检测术语精讲:IoU、置信度、mAP一次搞懂(附实战案例)
本文深入解析了YOLO目标检测中的三个核心术语:IoU、置信度和mAP。IoU衡量预测框与真实框的重合度,是训练损失函数和NMS筛选的基础;置信度评估预测框的可靠性,用于过滤无效检测结果;mAP综合评估模型性能,是模型对比和优化的关键指标。文章通过实例分析三者在YOLO中的实际应用,指出常见误区并提供调参建议,如调整置信度阈值平衡漏检与误检、优化数据集提升mAP等。理解这三个术语能帮助新手有效分析训练结果,为后续模型优化奠定基础。
2026-01-22 08:10:04
148
原创 YOLO26 OBB实战:无人机遥感任意角度目标检测(精度超YOLO11,含标注全流程)
摘要:本文针对无人机遥感目标检测中传统水平框的局限性,详细介绍了YOLO26 OBB(旋转框)技术的改进与应用。YOLO26通过优化旋转框损失函数、增强小目标特征提取和背景抑制策略,在DOTA-v1.5数据集上实现82.7%的mAP@0.5,较YOLO11提升7.2%。文章从核心优势、标注规范到实战部署全流程拆解,提供遥感场景专属的标注技巧、格式转换脚本及训练参数优化建议,帮助解决任意角度目标检测难题。
2026-01-22 08:09:54
557
原创 爬虫避坑封神篇|90%新手必踩的5个雷区,第4个直接封账号,附实战避坑方案(血的教训)
动态页面别硬刚:requests只适用于静态页面,动态页面直接用Playwright,隐藏自动化标识,模拟真人渲染;请求头要完整伪装:不要只加User-Agent,完整配齐字段,并用fake-useragent随机切换,避免被识别;频率控制是底线:单IP请求间隔≥2秒,并发数≤5,高频爬取必封IP,贪快反慢;账号安全第一位:专用爬虫账号隔离个人账号,不用常用账号爬取,乱带Cookie必封账号;数据质量要保障:Redis去重+失败重试+数据校验,避免重复、缺失数据,减少后续整理成本。
2026-01-21 06:53:13
300
【计算机视觉】基于自适应增强与双向蒸馏的YOLOv8优化:工业复杂场景缺陷检测精度提升方法
2026-01-20
【计算机视觉】基于YOLOv8的目标检测模型适配:工业质检-自动驾驶-安防监控场景优化与部署避坑指南
2026-01-20
【计算机视觉】基于YOLOv8的车牌识别模型训练:CCPD数据集预处理与小目标检测优化系统实现
2026-01-20
【计算机视觉】基于YOLO26的端到端目标检测模型:边缘设备高效部署与无NMS推理性能优化
2026-01-20
【计算机视觉】基于YOLOv9与YOLOv8的边缘检测模型对比:三大硬件场景下推理速度与精度平衡的实测分析
2026-01-20
【计算机视觉】基于YOLOv8与OpenCV的实时视频流处理系统:多源适配与性能优化实战方案
2026-01-20
【计算机视觉】基于YOLOv8与OpenCV的实时视频流目标检测系统集成:多源视频分析与轻量化优化方案
2026-01-20
【计算机视觉】基于YOLOv8的目标检测实战:水果识别模型从数据标注到推理部署全流程
2026-01-20
【计算机视觉】基于YOLO系列的目标检测原理与PyTorch实战:从算法演进到工业落地全流程解析
2026-01-20
【计算机视觉】基于YOLOv12的目标检测模型训练:从环境搭建、数据标注到模型优化的全流程实践指南
2026-01-12
【计算机视觉】基于YOLO与大模型的工业巡检自动化:缺陷检测与报告生成全链路技术
2026-01-12
【Python爬虫】从基础爬取到分布式架构的技术演进:动态网页应对与反爬策略实战应用
2025-12-27
网络爬虫基于Python的高校研招信息聚合系统设计:自动化采集与实时提醒在教育信息获取中的应用
2025-12-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅