自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

专注于Python爬虫开发,分享爬虫技巧、项目实战与反爬经验,使用Scrapy、BeautifulSoup等工具,解决数据抓取难题。

专注于Python爬虫开发,分享爬虫技巧、项目实战与反爬经验,使用Scrapy、BeautifulSoup等工具,解决数据抓取难题。

  • 博客(2629)
  • 收藏
  • 关注

原创 企业级YOLOv7轻量化部署:TensorRT加速+边缘计算,支撑百万级并发

摘要:企业级YOLOv7高性能部署全链路优化方案 针对企业级场景中YOLOv7目标检测模型面临的模型体积大、推理延迟高、并发能力弱三大核心痛点,本文提出"轻量化改造+TensorRT加速+边缘集群架构"全链路优化方案。通过结构化剪枝、INT8量化和冗余算子裁剪实现模型体积压缩85%,显存占用降至64MB;利用TensorRT的算子融合和动态批处理技术将GPU推理延迟从8ms降至1ms;设计边缘节点集群架构,实现单集群(8台Jetson AGX Orin)百万级并发处理能力。实测表明优化后

2026-01-25 07:10:59 104

原创 Python游戏爬虫实战:爬取Steam/Wegame游戏数据(价格+好评率+折扣)

本文介绍了一个游戏折扣信息爬虫的实战开发过程。针对Steam和Wegame平台,作者使用Python技术栈(requests+lxml+pandas)实现了批量爬取热销游戏的价格、折扣和好评率数据,并支持价格对比和折扣分析功能。文章详细拆解了技术选型、反爬策略、数据清洗和可视化分析的全流程,提供可直接复用的代码。核心亮点包括:针对Steam的反爬处理、多平台数据统一存储、以及"高折扣+高好评"游戏的智能筛选功能,帮助游戏爱好者精准获取优惠信息。该项目具有新手友好、实战性强等特点,代码开箱

2026-01-25 07:10:49 290

原创 Python美食爬虫实战:爬取下厨房/美食杰菜谱,一键生成离线HTML/PDF美食手册

本文介绍了一个实用的美食菜谱爬虫项目,帮助用户批量获取下厨房和美食杰的菜谱数据,并生成可离线使用的HTML/PDF手册。项目采用Python技术栈(requests+lxml+pandas+Jinja2),从需求分析、技术选型到代码实现全流程讲解,重点解决菜谱数据爬取、清洗和离线手册生成问题。核心功能包括:爬取家常菜和地方菜数据、自动去重分类、生成带搜索功能的HTML手册和可打印PDF,适配手机/平板离线查看。代码完整开源,新手友好,强调实用性和可落地性。

2026-01-25 07:10:40 49

原创 Python体育爬虫实战:一站式爬取NBA/足球赛事数据(比分+赛程+多维度统计分析)

本文分享了体育数据爬虫实战经验,针对NBA和足球赛事数据获取需求,提供了一套完整的Python解决方案。文章详细介绍了从环境配置、反爬策略到具体实现的全流程,包括: 技术选型:使用requests+lxml高效爬取,配合pandas进行数据处理,sqlite3实现本地存储 反爬技巧:随机UA生成、请求延迟、异常重试等实用方法 数据源分析:选择ESPN和懂球帝作为数据源,解析其页面结构特点 核心实现:给出NBA赛事爬取的完整代码,包含数据提取、清洗和存储逻辑 项目特色在于: 新手友好,代码可直接复用 兼顾爬取

2026-01-25 07:10:05 102

原创 Python爬虫实战:Playwright无头浏览器 绕过JS反爬(金融场景版)

摘要:本文针对金融数据采集中的JS反爬挑战,提出基于Playwright的高效解决方案。相比Selenium,Playwright具备更强的反爬伪装能力、原生无头模式支持和自动等待机制,能有效应对金融平台常见的浏览器指纹检测、动态加密渲染等反爬手段。文章详细拆解了Playwright环境搭建、无头配置优化及反爬伪装策略,并针对股票加密行情页、基金登录页等典型金融场景,提供动态数据提取的实战方案。通过整合随机UA、分辨率模拟等增强措施,该方案可直接集成到分布式架构中,实现千万级金融数据的安全采集。

2026-01-25 07:09:54 74

原创 Python爬虫实战:JSON数据解析与Ajax异步请求接口爬取(金融场景版)

本文针对金融数据采集场景,提出基于Ajax接口的高效爬取方案。相比传统HTML解析,直接对接JSON接口可提升3-5倍效率,更适合千万级数据采集需求。文章详细拆解金融Ajax接口特性(动态加密参数、高频更新、严格反爬),提供从接口定位、请求构造到JSON解析的完整流程,并给出可直接集成到分布式架构的Python实现代码。重点解决金融场景下的动态参数处理、反爬对抗等核心问题,实现"接口爬取-数据解析-分布式集成"的闭环方案,显著提升金融数据采集的稳定性和效率。

2026-01-25 07:09:47 212

原创 YOLOv10 PSA模块实操:全局特征建模,遮挡目标检测漏检率下降8个百分点

工业遮挡目标检测的YOLOv10 PSA解决方案 针对工业场景中零件堆叠/遮挡导致的检测难题,本文提出基于YOLOv10 PSA模块的改进方案。通过金字塔分割注意力机制,PSA模块实现了多尺度特征融合与全局上下文建模,有效解决了原生YOLOv10在遮挡场景下的特征碎片化问题。核心创新包括:1)多尺度金字塔分割捕捉不同遮挡程度的特征;2)注意力加权强化未遮挡区域特征;3)工业级数据增强策略模拟真实遮挡场景。实验表明,该方法将工业遮挡目标的漏检率从13%降至5%,mAP@0.5提升至94.2%,同时保持35FP

2026-01-25 07:09:28 314

原创 YOLOv8实战项目:智慧农业病虫害检测,从数据集到模型落地

YOLOv8智慧农业病虫害检测的核心是“农业场景定制化”:从数据集构建(田间实拍+农业增强)→ 训练调优(Focal Loss+小目标锚框)→ 轻量化(INT8量化+剪枝)→ 边缘部署(树莓派/农业AI盒子),全链路适配农业生产的低算力、复杂背景、实时检测需求,最终实现树莓派22FPS推理、病虫害漏检率≤5%,完全满足大田/大棚的病虫害巡检需求。

2026-01-25 07:09:21 160

原创 YOLOv8n轻量化实战:10分钟打通实时摄像头目标检测,附参数调优与避坑指南

本文介绍了如何快速入门YOLOv8目标检测框架,通过摄像头实战实现实时检测。YOLOv8凭借轻量化架构和跨平台优势,是新手入门的理想选择。文章详细讲解了环境搭建(1分钟完成)、核心代码逻辑(3分钟掌握)以及性能调优技巧(3分钟进阶),提供可直接运行的代码示例。重点包括:模型选择(优先yolov8n.pt)、摄像头参数优化、置信度阈值调整、检测类别指定等实用技巧,帮助开发者快速实现10-15FPS的实时检测效果,并针对不同场景提供优化建议。

2026-01-25 07:09:14 187

原创 YOLO26的“统一架构”:目标检测、分割、姿态估计一网打尽

YOLO26统一架构创新性地通过共享骨干网络、动态特征融合和自适应损失平衡,实现了单模型同时完成目标检测、实例分割和姿态估计三大任务。其核心技术包括:优化的C2f-M骨干网络实现特征复用,PFPN金字塔动态适配多任务特征需求,以及ProgLoss损失函数随训练进程自动调整任务权重。相比传统多模型叠加方案,YOLO26在保持各任务精度的同时,推理速度提升52%,部署成本降低80%,真正实现了"一次推理,全任务输出"的高效范式。这一设计不仅大幅降低了工程复杂度,更为端到端计算机视觉系统提供了

2026-01-25 07:09:06 314

原创 YOLO26:彻底告别NMS!端到端无后处理的目标检测新范式

训练命令(STAL标签分配+ProgLoss默认启用)batch=16,imgsz=640,optimizer="musgd", # 使用MuSGD优化器loss="progloss" # 使用ProgLoss损失函数YOLO26的无NMS端到端设计不仅是技术上的突破,更是目标检测领域的一次范式革命。它解决了长期困扰开发者的延迟、超参和部署问题,同时通过STAL、ProgLoss和MuSGD等创新技术实现了精度与速度的双重提升。

2026-01-24 08:20:35 246

原创 YOLO26 vs YOLOv8:速度提升43%的背后,Ultralytics的全链路优化逻辑

YOLO26相比YOLOv8实现43%速度提升的核心在于无NMS端到端架构和全链路效率优化。移除NMS后处理贡献60%的速度增益,其余来自检测头重构、特征融合轻量化等优化。关键突破包括: 采用STAL标签分配彻底消除NMS需求 精简架构移除DFL模块并优化特征融合 引入MuSGD优化器和ProgLoss训练策略 底层推理引擎优化算子融合和内存管理 实测显示,YOLO26n在CPU推理中平均耗时13.9ms,比YOLOv8n快43%,同时mAP提升5.7个百分点,实现了速度与精度的双重突破。

2026-01-24 08:20:29 279

原创 手机、无人机都能跑!YOLO26跨平台部署实战指南(Android/iOS/无人机边缘端)

YOLO26凭借无NMS端到端设计、43%速度提升和跨平台适配性,成为边缘端目标检测新标杆。针对手机和无人机两大核心边缘平台,文章提出通用部署流程:模型轻量化导出(ONNX格式)、各平台推理引擎适配、硬件优化及真机测试。YOLO26通过移除DFL模块、精简架构设计,模型体积比YOLOv8小30%,内存占用降低40%。部署核心包括FP16/INT8量化导出,并针对NVIDIA Jetson无人机(TensorRT优化)和消费级ARM无人机(ONNX Runtime加速)提供专属方案,实现"一次导出,

2026-01-24 08:20:23 103

原创 从YOLOv5到YOLO26:目标检测模型的“效率革命”五年回顾

**摘要:2020-2025年,YOLO系列从v5到v26完成了从实验室模型到工业级解决方案的转型,核心围绕边缘设备效率优化。YOLOv5首次平衡精度与效率,实现轻量化突破;2022-2024年v7-v11通过架构精简、多任务融合等持续优化;2025年YOLO26实现无NMS端到端设计,推理速度提升300%,模型体积压缩80%,并支持统一多任务架构与跨平台适配。这五年演进体现了从算法竞赛导向到工业落地思维的转变,YOLO26的无NMS设计成为效率革命的里程碑。

2026-01-24 08:20:17 211

原创 YOLO系列小目标检测终极方案:YOLO26 STAL vs YOLOv12注意力 vs YOLOv8动态锚框

小目标检测技术对比:YOLO26 STAL、YOLOv12注意力与YOLOv8动态锚框 小目标检测面临特征表达不足、标签失衡和漏检三大挑战。2023-2026年,Ultralytics推出三大优化方案:YOLOv8采用动态锚框+TAL标签分配,YOLOv12引入全注意力架构,YOLO26创新性提出STAL小目标感知标签分配。三者分别从框生成、特征增强和训练策略角度提升小目标检测性能。测试显示,YOLO26 STAL在COCO小目标检测上mAP达40.9%-47.8%,推理速度最快且部署友好;YOLOv12在

2026-01-24 08:20:12 559

原创 Python爬虫实战【汽车类】:爬取汽车之家_易车网 车型配置+油耗+价格 及性价比筛选

本文提出基于Selenium的汽车数据爬取方案,针对汽车之家、易车网等平台动态渲染、数据分散的特点,实现从车型列表到详情页的完整数据采集。方案包含: 技术适配:利用Selenium模拟浏览器操作,解决分页懒加载、动态渲染、反爬拦截等痛点,通过随机UA、分辨率伪装提升爬取成功率。 数据采集流程:分两步爬取-先获取列表页基础信息(车型、价格),再深入详情页提取配置参数(ESP、倒车影像)和油耗数据(NEDC/WLTC标准)。 实用价值:提供可直接复用的代码模板,包含浏览器初始化、反爬配置等核心代码,并给出性价比

2026-01-24 08:19:55 337

原创 Python爬虫实战【财经类】:爬取股票_基金_期货实时数据 行情监控+走势分析

本文介绍了一种基于Selenium的财经数据爬取方案,针对东方财富网、同花顺等主流平台的股票、基金、期货实时行情数据。文章首先分析了财经平台数据动态加载、反爬机制严格等特点,提出采用Selenium模拟浏览器交互,配合pandas、matplotlib等工具实现数据爬取、监控和分析。核心内容包括:1) 技术栈配置,强调浏览器伪装和反爬措施;2) 实战演示股票实时行情与K线数据爬取流程,提供可复用的代码模板。该方案解决了动态行情加载、实时同步等难点,适合个人投资者搭建数据监控系统。

2026-01-24 08:19:48 252

原创 Python招聘爬虫实战:爬取脉脉/拉勾网(大厂内推+薪资爆料+面试经验)

本文介绍了一个针对大厂招聘信息的爬虫工具,可批量爬取脉脉和拉勾网的招聘数据,包括内推岗位、薪资爆料和面试经验,并自动分析薪资分布和高频考点。文章详细拆解了从环境搭建到数据爬取、清洗和分析的全过程,提供了可直接复用的代码,适合新手学习。核心功能包括:稳定爬取脉脉内推/薪资/面经板块、拉勾网内推岗位信息,自动清洗数据并生成结构化文档,以及薪资分布统计和面试考点词云可视化。技术选型注重实用性和新手友好性,使用requests+lxml进行爬取,pandas+sqlite3进行数据处理,并提供了反爬防护措施。最终生

2026-01-24 08:19:37 349

原创 Python办公学习爬虫实战:合法获取知网/万方/维普论文文献(合规版)

本文介绍了一种合法合规的方法,利用Python爬虫获取知网、万方、维普等平台的开放获取(OA)论文资源。文章重点强调必须遵守《著作权法》,仅爬取平台公开的OA论文元数据(标题、摘要、作者等)和可免费下载的全文。提供了技术选型建议(requests+lxml+pandas等工具),详细说明了各平台的合法免费获取渠道,并给出了环境配置和合规请求函数的封装代码。最后以知网OA论文专区为例,展示了如何合法爬取论文列表信息和下载公开论文的具体实现代码。全文严格遵守robots协议,控制请求频率,确保学术数据获取的合法

2026-01-24 08:19:31 160

原创 Python小说漫画爬虫实战:合规爬取免费资源(自动更新+离线阅读)

本文介绍了一个Python爬虫项目,用于合规爬取公开免费的小说和漫画资源,实现自动更新和离线阅读功能。项目严格遵循著作权法,仅针对作者或平台明确标注为免费的资源进行爬取,严禁涉及付费或盗版内容。 技术方案采用requests、BeautifulSoup等库实现数据抓取和解析,通过定时任务自动检测更新,并将内容保存为TXT、EPUB或HTML格式供离线阅读。核心功能包括: 小说章节自动更新与TXT/EPUB格式转换 漫画图片下载与HTML阅读页面生成 本地文件管理和更新记录保存 项目强调合规性,提供了详细的免

2026-01-24 08:19:24 380

原创 拿来即用!Python爬虫实战:破解User-Agent封禁+IP代理池,稳定爬取资讯网站无限制

本文针对资讯网站常见的UA校验和IP封禁反爬机制,提出了一套基于Scrapy框架的完整解决方案。通过构建随机UA池和动态IP代理池,结合请求间隔随机化策略,有效突破反爬限制。方案采用fake-useragent自动生成多浏览器UA,并实现代理IP的获取、校验、存储闭环管理。文中提供了详细的Python代码实现,包括UA中间件集成和代理池核心逻辑,确保爬取效率和稳定性。该方案环境配置简单,依赖版本明确,适合新手快速落地实施,实现资讯网站数据的稳定采集与结构化存储。

2026-01-23 07:29:00 315 2

原创 Python爬虫实战【教育类】:爬取考研_考公_教资真题 题库+答案+解析 自动整理

本文提出了一种基于Selenium的自动化爬取方法,针对粉笔职教、中公教育、华图教育等主流教育平台的考研、考公、教资真题进行高效采集与整理。通过模拟浏览器交互解决动态加载题库和分页展示问题,利用pandas和python-docx等工具实现真题数据的结构化处理,最终生成适配个人备考需求的题库文档。该方法特别优化了真题与解析匹配、多题型适配、自动分类归档等核心环节,选用免费公开题库数据源,提供可直接复用的代码模板,为考生提供了一种高效便捷的备考解决方案。

2026-01-23 07:28:53 430

原创 Scrapy分布式爬虫实战:千万级金融行情数据采集全方案

本文针对金融数据规模化采集场景,提出基于Scrapy-Redis的分布式爬虫解决方案。通过Redis集群统一调度任务,多节点协同工作突破单机性能瓶颈,实现千万级股票/外汇行情数据的高效采集。方案覆盖从架构设计、环境部署到代码实现的全链路流程,重点解决金融数据高并发采集、反爬对抗、数据一致性等核心问题。采用Scrapy+Redis+分布式存储的技术栈,支持动态扩容与故障自愈,日均吞吐量可达千万级别,为金融大数据分析提供稳定数据源。

2026-01-23 07:28:29 380

原创 大厂级爬虫工程架构全解析:从采集到可视化的一站式落地方案

Airflow具备强大的DAG工作流编排能力,支持任务依赖配置、定时触发、可视化运维,适合作为调度核心;自定义插件解决爬虫场景个性化需求,Redis用于任务队列缓存与负载均衡。大厂级爬虫系统的核心竞争力,在于“架构设计的前瞻性”与“落地细节的把控力”——既要通过分层解耦、扩展设计支撑业务迭代,也要通过反爬对抗、容错兜底、运维监控保障稳定运行,同时兼顾数据质量与合规性。落地建议:小步快跑迭代:先搭建核心链路(采集+清洗+存储),再逐步完善调度、监控、可视化模块,避免一步到位导致的复杂度失控;

2026-01-23 07:28:20 236

原创 YOLOv10 CIB模块改造:工业零件检测精度提升2.3%,计算量减少36%

本文针对工业零件检测中YOLOv10 CIB模块的计算冗余和小目标检测不足问题,提出CIB-Lite改进方案。通过分组通道融合减少60%计算量,引入轻量空间注意力模块(LSAM)提升小目标检测精度4.1%,并裁剪冗余卷积进一步降低计算量10%。改造后模型在工业零件数据集上mAP提升2.3%至95.7%,计算量减少36%,边缘端推理速度达40FPS。文章详细介绍了CIB-Lite的设计原理、工业数据集的标注规范和专属增强方法,并提供了完整的模块实现代码,为工业场景的目标检测提供了高效解决方案。

2026-01-23 07:27:43 415

原创 YOLOv11(Ultralytics)环境配置保姆级指南:0基础小白也能一次成功(含CPU/GPU双方案)

本文为小白提供YOLOv11环境配置的保姆级教程,包含CPU和GPU双方案。Windows系统下,从Python安装、pip配置到Ultralytics库安装,详细说明每个步骤并附验证方法。重点解决GPU配置难题,包括CUDA、cuDNN版本匹配及安装要点。最后通过PyCharm实战演示本地图片检测和摄像头实时检测代码,确保新手能快速上手YOLOv11目标检测。全文采用"先执行后理解"的方式,避免理论困扰,所有命令行代码可直接复制粘贴,关键步骤配有注意事项和常见问题解决方案。

2026-01-23 07:27:29 538

原创 大厂级YOLOv5多目标跟踪系统:结合DeepSORT,实现行人轨迹追踪

本文提出了一种面向大厂级场景的行人多目标跟踪优化方案,通过YOLOv5检测模型定制和DeepSORT跟踪算法改进,有效解决了传统方法ID切换率高、鲁棒性差等问题。核心创新包括:1)优化卡尔曼滤波参数和ReID特征提取,将ID切换率降至0.8%;2)采用遮挡恢复策略和轨迹缓存,使跟踪丢失率≤3%;3)通过多线程推理和批量处理实现高效部署,单GPU支持32路视频流。实验表明,该系统在智慧园区等场景中准确率达98.5%,边缘设备Jetson AGX Orin可实时处理4路1080P视频流,满足大厂级应用需求。

2026-01-23 07:27:17 417

原创 新手必看!YOLO目标检测入门:彻底搞懂训练/验证/测试的区别(附实战全流程)

本文深入解析YOLO目标检测中训练集、验证集和测试集的核心区别与实操方法。三大数据集必须严格隔离、各司其职:训练集(70%)用于模型学习特征,验证集(20%)调参优化,测试集(10%)最终评估。文章强调数据隔离是避免模型"作弊"的关键,并提供了手动划分和Python脚本自动划分两种实操方案,包含可直接复用的代码。通过7:2:1的标准划分比例和严格的物理/内容隔离要求,确保模型评估客观性,避免实际落地效果不佳的问题。文中还针对不同数据规模给出了比例调整建议,为YOLO开发者提供了清晰的工程

2026-01-23 07:27:08 552

原创 YOLO26工业质检实战落地:无NMS端到端推理+STAL小目标优化,AP提升2.8%(附完整部署代码)

YOLO26工业质检优化方案摘要(149字) 针对工业质检高精度、低延迟、小目标检测需求,YOLO26通过两大创新突破传统YOLO局限:1)无NMS端到端推理架构,采用动态双标签分配和置信度校准,降低20%推理延迟;2)STAL小目标优化模块,融合空间-时序注意力机制,提升小目标AP值4.2%。工业部署实测显示,在汽车零部件缺陷检测中,整体AP提升2.8%至94.5%,推理速度达38FPS。配套工业级数据增强策略,有效解决金属反光、微小缺陷等检测难题,为工业质检提供高效端到端解决方案。

2026-01-23 07:26:51 593

原创 YOLO26工业缺陷检测实战:ProgLoss平衡损失,复杂背景下瑕疵识别率达97.5%

YOLO26针对工业复杂背景缺陷检测提出创新解决方案ProgLoss,通过渐进式加权和难例自适应挖掘,有效解决传统方法在样本不均衡和损失等权问题上的瓶颈。该模型在金属、PCB和注塑件三大工业场景中实现97.5%的平均识别率,比YOLOv12提升8.2%。核心优化包括:1)ProgLoss分阶段动态调整样本权重,前期均衡学习,后期聚焦难例;2)工业背景抑制模块和小目标特征提纯技术。配套工业级数据集处理方案,涵盖6类典型瑕疵,90%为复杂背景难例样本,并设计专属数据增强策略模拟真实工业场景。完整方案包含训练配置

2026-01-23 07:26:44 530

原创 实战封神!Python爬虫攻克动态页面:Selenium+Playwright双引擎爬取某点评网全量数据

摘要:本文介绍了应对动态加载网站(如某点评网)的双引擎爬虫方案,结合Selenium和Playwright优势实现数据抓取。文章首先分析了普通爬虫失效的原因,包括异步加载、JS渲染依赖和反爬机制。随后详细讲解了环境配置、核心架构设计,并提供了Selenium引擎的具体实现代码,包括反爬策略和搜索流程。该方案能有效解决动态页面数据获取难题,具有实战参考价值。(149字)

2026-01-22 08:11:11 289

原创 Python爬虫实战:爬取体育赛事比分 实时更新+结果统计

本文分享了一套基于Python的体育赛事实时比分爬虫工具,通过抓取API接口实现自动化数据采集与分析。系统采用requests库获取比分数据,利用pandas进行统计计算,配合schedule定时更新,可自动生成胜负率、场均进球等关键指标并导出Excel。文章详细介绍了从抓包分析到数据可视化的全流程,包括API接口定位、JSON解析、反爬策略应对等实战技巧,帮助体育爱好者摆脱手动统计的繁琐操作,实现赛事数据的智能跟踪与分析。该工具支持多赛事并行监控,适用于足球、篮球等主流体育比赛的数据采集需求。

2026-01-22 08:10:59 161

原创 YOLOv12轻量化部署实测:A²架构压缩70%体积,移动端稳跑45FPS(含完整量化教程)

YOLOv12轻量化部署指南:移动端实时目标检测优化方案 本文详细介绍了YOLOv12在移动端的轻量化部署方案。针对传统YOLO模型在移动设备上体积大、速度慢的痛点,YOLOv12通过创新的A²架构实现了显著优化:自适应注意力模块减少72%参数,动态通道裁剪降低70%体积,轻量化特征融合提升22%推理速度。文章提供完整的部署流程,包括: 模型剪枝(40%剪枝率+15轮微调) 结构精简(移除冗余分支+调整输入尺寸) INT8量化(精度损失仅2%,帧率提升至45FPS) 实测在骁龙8 Gen2手机上,优化后的Y

2026-01-22 08:10:49 177

原创 YOLOv12智慧农业实战:田间病虫害自动识别,准确率92.3%(附数据集+部署方案)

YOLOv12通过农业场景专属优化,实现了田间病虫害识别准确率92.3%的突破,解决了传统人工巡检的效率低、误判率高的痛点,为智慧农业的规模化落地提供了可行方案。

2026-01-22 08:10:44 232

原创 YOLOv10端到端检测实战:双标签分配无NMS,自动驾驶场景延迟降低42%

YOLOv10端到端自动驾驶目标检测方案 摘要:针对自动驾驶实时目标检测的严苛需求,YOLOv10创新性地提出端到端检测架构,通过双标签分配策略直接输出最终检测结果,彻底摒弃NMS后处理步骤。在KITTI数据集上实现延迟降低42%、mAP@0.5提升3.1%的双重突破。关键技术包括:1)主标签+辅助标签的双分配机制,从源头减少冗余框;2)预测头重构与置信度校准,直接输出唯一目标框。实测在NVIDIA Jetson Xavier NX平台实现55FPS稳定帧率,完全满足L2-L3级自动驾驶实时性要求。本文提供

2026-01-22 08:10:29 201

原创 YOLOv12小目标检测实战:超32×32像素缺陷识别,召回率突破90%(对比YOLOv9实测)

工业小目标缺陷检测是工业质检中的核心挑战,YOLOv12针对32×32像素以下小目标的检测性能显著优于YOLOv9。本文通过对比分析YOLOv12在小目标特征提取、锚框匹配和损失函数三方面的优化,提出针对PCB缺陷等工业场景的解决方案。关键改进包括:新增小目标特征金字塔(SFP)模块增强特征提取能力,自适应锚框策略提升匹配准确率,以及加权EIoU损失函数降低定位误差。实验表明,YOLOv12在PCB缺陷数据集上对小目标的召回率提升15%,达到90%以上。文章详细介绍了工业缺陷数据集的处理方法、数据增强策略和

2026-01-22 08:10:21 275

原创 YOLOv8树莓派轻量化部署终极指南:从模型压缩到底层加速,稳定跑满80FPS

本文详细介绍了在树莓派上部署YOLOv8模型并实现80FPS高性能推理的完整方案。针对树莓派算力有限的问题,提出了"模型轻量化→推理引擎优化→工程级调优→硬件适配"全链路优化策略。通过结构化剪枝、INT8量化和模型精简,将模型体积从6.2MB压缩至1.8MB,计算量降低65%。采用OpenVINO推理引擎,结合CPU核心绑定和异步推理队列等优化手段,最终在树莓派4B上实现了80FPS的稳定运行,准确率损失控制在3%以内。文章提供了详细的硬件选型建议、环境配置说明和可直接复用的代码,为边缘

2026-01-22 08:10:13 392

原创 YOLO目标检测术语精讲:IoU、置信度、mAP一次搞懂(附实战案例)

本文深入解析了YOLO目标检测中的三个核心术语:IoU、置信度和mAP。IoU衡量预测框与真实框的重合度,是训练损失函数和NMS筛选的基础;置信度评估预测框的可靠性,用于过滤无效检测结果;mAP综合评估模型性能,是模型对比和优化的关键指标。文章通过实例分析三者在YOLO中的实际应用,指出常见误区并提供调参建议,如调整置信度阈值平衡漏检与误检、优化数据集提升mAP等。理解这三个术语能帮助新手有效分析训练结果,为后续模型优化奠定基础。

2026-01-22 08:10:04 148

原创 YOLO26 OBB实战:无人机遥感任意角度目标检测(精度超YOLO11,含标注全流程)

摘要:本文针对无人机遥感目标检测中传统水平框的局限性,详细介绍了YOLO26 OBB(旋转框)技术的改进与应用。YOLO26通过优化旋转框损失函数、增强小目标特征提取和背景抑制策略,在DOTA-v1.5数据集上实现82.7%的mAP@0.5,较YOLO11提升7.2%。文章从核心优势、标注规范到实战部署全流程拆解,提供遥感场景专属的标注技巧、格式转换脚本及训练参数优化建议,帮助解决任意角度目标检测难题。

2026-01-22 08:09:54 557

原创 爬虫避坑封神篇|90%新手必踩的5个雷区,第4个直接封账号,附实战避坑方案(血的教训)

动态页面别硬刚:requests只适用于静态页面,动态页面直接用Playwright,隐藏自动化标识,模拟真人渲染;请求头要完整伪装:不要只加User-Agent,完整配齐字段,并用fake-useragent随机切换,避免被识别;频率控制是底线:单IP请求间隔≥2秒,并发数≤5,高频爬取必封IP,贪快反慢;账号安全第一位:专用爬虫账号隔离个人账号,不用常用账号爬取,乱带Cookie必封账号;数据质量要保障:Redis去重+失败重试+数据校验,避免重复、缺失数据,减少后续整理成本。

2026-01-21 06:53:13 300

【计算机视觉】基于自适应增强与双向蒸馏的YOLOv8优化:工业复杂场景缺陷检测精度提升方法

内容概要:文章针对复杂工业场景下YOLOv8模型面临的泛化能力差、小目标漏检、精度与速度难以平衡等问题,提出“自适应数据增强+双向蒸馏”联合优化方案。通过设计基于样本难度和目标尺度的自适应增强策略,动态调整增强方式以提升数据质量和模型鲁棒性;结合双向蒸馏机制,在轻量化的YOLOv8s学生模型与YOLOv8x教师模型之间实现知识双向传递,既提升精度又保持推理效率。在真实轴承缺陷检测项目中,该方案将mAP@0.5从79.2%提升至87.8%,漏检率由12.3%降至3.1%,并在工控机上维持38FPS的实时性能,成功实现量产落地。文中还提供了完整的代码改造示例与五大工业部署避坑指南。; 适合人群:从事工业视觉算法研发、具备一定深度学习基础的工程师,尤其是工作1-3年、参与过目标检测项目落地的研发人员。; 使用场景及目标:①解决工业场景中小样本、光照不均、缺陷遮挡等导致的模型泛化差问题;②在不牺牲推理速度的前提下提升轻量模型精度,实现高精度实时质检;③指导YOLOv8在实际产线中的模型优化与部署适配。; 阅读建议:此资源以真实工业项目为背景,强调问题驱动的技术选型与工程闭环,建议读者结合代码片段动手实践,并重点关注自适应增强与蒸馏顺序、参数调优及部署适配等关键环节。

2026-01-20

【计算机视觉】基于YOLOv8的目标检测模型适配:工业质检-自动驾驶-安防监控场景优化与部署避坑指南

内容概要:本文深入解析了YOLOv8在工业质检、自动驾驶和安防监控三大典型场景中的实际落地方法与优化策略,强调模型应用需结合具体业务需求进行差异化适配。文章从核心认知出发,提出“需求决定模型选型、硬件约束反向优化、场景干扰针对性解决”三大原则,并分别针对各场景详细阐述数据增强、模型改造、部署优化及避坑要点。例如,工业质检聚焦小目标检测与高召回率,通过关闭Mosaic增强、精细化标注和OpenVINO部署提升性能;自动驾驶注重低延迟与鲁棒性,采用TensorRT加速与传感器融合方案;安防监控则强化多尺度检测与边缘部署,实现远距离识别与联动报警。最后总结跨场景通用优化技巧,强调“小而精”模型选型、量化策略与后处理调优的重要性。; 适合人群:具备一定计算机视觉基础,从事目标检测相关项目研发,有1-3年工作经验的算法工程师或AI应用开发者;尤其适合正在或将要将YOLOv8应用于工业、交通、安防等实际场景的技术人员; 使用场景及目标:①掌握YOLOv8在不同真实业务场景下的适配改造方法;②学习如何针对小目标、极端天气、低算力设备等问题进行模型优化与部署提速;③规避常见工程落地陷阱,提升模型实用性与稳定性; 阅读建议:此资源以实战为导向,包含大量可复用的代码片段与实测数据,建议读者结合自身项目背景,边实践边调试,重点关注各场景的数据预处理、模型修改与部署方案的适配性。

2026-01-20

【计算机视觉】基于YOLOv8的车牌识别模型训练:CCPD数据集预处理与小目标检测优化系统实现

内容概要:本文详细介绍了如何从零开始使用YOLOv8训练自定义车牌识别模型,涵盖环境搭建、数据集准备(采用公开CCPD数据集并进行格式转换与预处理)、模型配置(适配小目标检测的锚框与网络结构调整)、模型训练(含调参技巧与过拟合应对策略)、推理测试(支持图片与视频实时检测)以及常见问题排查和扩展优化方向。文中提供了完整的可复用代码、专属优化建议及实测验证结果,帮助读者高效构建高性能车牌检测系统。; 适合人群:具备基础Python编程能力,对计算机视觉有兴趣的初学者或从事智慧交通、安防等领域项目的研发人员,工作年限1-3年为佳;无需深厚的深度学习理论背景,但需具备基本的机器学习概念。; 使用场景及目标:①应用于停车场管理、智能交通监控等实际场景中的车牌检测任务;②掌握YOLOv8在小目标检测上的优化方法,如锚框调整、数据增强策略选择;③实现端到端的车牌检测模型训练与部署流程,为进一步集成OCR实现字符识别打下基础。; 阅读建议:建议读者按照文档顺序逐步操作,重点理解数据预处理与模型配置部分的设计逻辑,动手实践每一步代码,并结合训练日志和可视化结果进行调优;对于实际项目应用,应根据具体场景采集补充数据并针对性优化模型。

2026-01-20

【计算机视觉】基于YOLO26的端到端目标检测模型:边缘设备高效部署与无NMS推理性能优化

内容概要:本文深度解析了Ultralytics最新开源的目标检测模型YOLO26,重点阐述其为边缘AI优化的四大核心技术:端到端无NMS推理、移除DFL模块、ProgLoss+STAL小目标增强策略以及MuSGD优化器,显著提升CPU推理速度(最高43%提速),降低部署复杂度。文章结合实测数据对比YOLOv8,验证YOLO26在精度、速度和边缘适配性上的全面优势,并提供基于Jetson Orin Nano的完整部署流程,包括环境搭建、模型推理、INT8量化与避坑指南,助力开发者快速落地应用。; 适合人群:具备Python与PyTorch基础,熟悉YOLO系列原理的算法工程师、嵌入式AI开发者及计算机视觉方向的学生,尤其是从事边缘计算、工业质检、无人机、IoT等领域的技术人员; 使用场景及目标:①在算力受限的边缘设备(如CPU、Jetson系列)上实现高效实时目标检测;②解决传统YOLO模型部署中NMS后处理复杂、量化兼容性差、小目标检测弱等问题;③通过轻量化模型设计与INT8量化优化推理性能; 阅读建议:建议结合文中提供的实战代码进行动手实践,重点关注无NMS推理机制、模型量化流程与边缘设备部署细节,同时注意模型选型与硬件匹配,以充分发挥YOLO26在边缘场景下的性能优势。

2026-01-20

【计算机视觉】基于YOLOv9与YOLOv8的边缘检测模型对比:三大硬件场景下推理速度与精度平衡的实测分析

内容概要:本文通过对YOLOv9与YOLOv8在三种典型边缘设备(Intel工控机CPU、Jetson Orin Nano、RK3588 NPU)上的实测对比,深入分析了YOLOv9宣称“推理速度提升52%”的实际表现。文章从架构创新(如GELAN、Efficient BiFPN、PGI、无NMS设计)出发,解释提速原理,并提供详实的FP16/INT8量化下的延迟、FPS、mAP等数据,揭示52%提速为理想场景下的极限值,实际边缘场景提速普遍在35%-43%之间。同时探讨了模型转换、量化兼容性及部署避坑技巧,强调YOLOv9在低算力设备上的优势与部署友好性。; 适合人群:具备YOLO系列基础认知和边缘AI部署经验的工程师,熟悉ONNX/TensorRT/RKNN等部署工具的技术人员; 使用场景及目标:①评估YOLOv9在工控机、Jetson、国产NPU等边缘设备上的实际性能增益;②指导YOLOv9/YOLOv8在不同硬件平台的模型导出、量化与推理优化;③帮助团队在精度、速度与部署成本间做出合理选型决策; 阅读建议:本文兼具理论分析与工程实践,建议结合实测数据与提供的代码脚本进行复现,重点关注不同硬件下的量化策略与部署陷阱,以实现高效落地。

2026-01-20

【计算机视觉】基于YOLOv8与OpenCV的实时视频流处理系统:多源适配与性能优化实战方案

内容概要:文章详细介绍了如何在5分钟内快速集成YOLOv8与OpenCV实现实时视频流分析,涵盖环境校验、核心代码集成、多视频源适配(本地摄像头、本地视频、RTSP网络流)及性能优化四大步骤。提供了可复用的完整代码,并深入讲解了卡顿优化、内存泄漏预防、推理参数调校等关键技术点,结合实际开发中的高频坑与解决方案,帮助开发者高效落地实时目标检测应用。; 适合人群:具备Python基础的计算机视觉初学者、CV工程化开发者、从事安防监控或边缘计算相关工作的研发人员(工作1-3年为佳); 使用场景及目标:①快速搭建YOLOv8+OpenCV实时检测系统原型;②适配多种视频输入源并解决常见兼容性问题;③优化推理速度与系统稳定性,提升低算力设备上的实时性表现; 阅读建议:建议边运行代码边理解各模块作用,重点关注参数配置与避坑指南,在真实项目中优先跑通再迭代优化,注意资源释放与异常处理以保障长期稳定运行。

2026-01-20

【计算机视觉】基于YOLOv8与OpenCV的实时视频流目标检测系统集成:多源视频分析与轻量化优化方案

内容概要:通过实战导向的方式,指导开发者在5分钟内完成YOLOv8与OpenCV的集成,实现对本地视频、摄像头及网络流(如RTSP/HTTP)的实时目标检测。文章提供可复用的核心代码框架,涵盖环境校验、视频流读取、YOLOv8推理、结果可视化、帧率显示与资源释放等完整流程,并针对常见问题提出轻量化优化方案与避坑指南,如调整图像尺寸提升推理速度、设置合理的置信度阈值减少误检漏检、正确释放资源防止内存泄漏等。整个流程无需自定义训练模型即可快速验证功能,适合项目原型开发和调试。; 适合人群:具备基础Python编程能力,希望快速实现视频流目标检测功能的开发者,尤其是从事计算机视觉方向的初学者或工程落地人员; 使用场景及目标:①快速验证YOLOv8在实时视频流中的目标检测能力;②构建可复用的视频分析系统原型;③适配多种视频源(摄像头、本地视频、网络流)的工业或安防场景; 阅读建议:建议读者按照文档提供的五步时间线顺序操作,重点关注环境配置与核心代码的参数修改,边运行边理解各模块作用,后续可在该框架基础上扩展目标跟踪、行为分析等功能。

2026-01-20

【计算机视觉】基于YOLOv8的目标检测实战:水果识别模型从数据标注到推理部署全流程

内容概要:通过2小时的极简实战流程,手把手指导新手从零搭建基于YOLOv8的目标检测模型,涵盖环境搭建、数据集准备与标注、模型训练、推理优化四大核心环节。采用“避坑+可复用代码”模式,强调实操落地而非理论深究,提供完整的代码示例与配置说明,支持CPU运行,适合无高算力条件的学习者。以水果检测为例,演示了自定义目标的数据处理、VOC转YOLO格式、模型训练与评估、图片/视频实时推理及基础优化策略,帮助读者快速掌握目标检测的完整工作流并实现迁移应用。; 适合人群:具备基础Python语法能力,对计算机视觉感兴趣的新手开发者或初入行的研发人员,工作年限不限,尤其适合零基础自学群体; 使用场景及目标:①快速搭建可运行的自定义目标检测模型;②掌握YOLOv8从数据准备到模型部署的核心流程;③应用于实际场景如物品识别、监控检测等项目的原型开发; 阅读建议:建议严格按照2小时时间规划逐步操作,重点关注各阶段避坑提示,配合提供的可复用代码进行实践,优先在CPU环境下验证流程,再逐步尝试GPU加速与性能优化。

2026-01-20

【计算机视觉】基于YOLO系列的目标检测原理与PyTorch实战:从算法演进到工业落地全流程解析

内容概要:本文系统梳理了YOLO目标检测算法从v1到v8的演进脉络,深入剖析其核心原理,包括单阶段检测机制、骨干网络、特征金字塔、解耦检测头及损失函数设计,并通过PyTorch实现极简版YOLO帮助理解底层逻辑。随后基于Ultralytics官方YOLOv8完成从数据准备、模型训练、评估到推理的完整实战流程,涵盖图像与视频检测、结果可视化,并提供模型优化、部署转换(ONNX/TensorRT)及常见问题排查等工程落地技巧。; 适合人群:具备Python基础、PyTorch入门能力和计算机视觉基础知识的研发人员,尤其是从事CV方向1-3年经验的工程师或希望快速掌握目标检测实战的学习者; 使用场景及目标:①理解YOLO系列各版本迭代逻辑及其在精度、速度与工程化之间的权衡;②掌握从零构建YOLO模型的核心代码实现;③利用YOLOv8进行实际项目训练与部署,解决工业检测、安防监控等场景中的目标识别需求; 阅读建议:此资源强调“原理→代码→落地”全链路贯通,建议读者边学边实践,先运行极简版代码理解核心机制,再过渡到YOLOv8完整项目,重点关注数据预处理一致性、模型调参与部署优化,结合文中避坑指南提升实战成功率。

2026-01-20

【计算机视觉】基于YOLOv12的目标检测模型训练:从环境搭建、数据标注到模型优化的全流程实践指南

内容概要:本文是一份详尽的YOLOv12目标检测入门教程,涵盖从环境搭建、数据集标注到模型训练与预测的完整流程。文章详细介绍了如何使用Anaconda创建虚拟环境、安装PyTorch与YOLOv12依赖,利用LabelImg进行数据标注并转换为YOLO格式,编写配置文件并启动模型训练,同时提供训练过程监控、结果分析及常见问题解决方案。此外,还包含进阶优化技巧如数据增强、学习率调整和迁移学习,并强调了实际操作中的避坑指南,所有代码均经过验证,适合新手快速上手。; 适合人群:具备基本Python编程能力和深度学习概念,初入计算机视觉领域、希望掌握目标检测实战技能的研发人员或学生;尤其适合工作1-3年想拓展CV方向的技术人员。; 使用场景及目标:①学习YOLOv12从零开始构建目标检测系统的全流程;②掌握工业级目标检测项目中的环境配置、数据处理、模型训练与调优方法;③应用于智能监控、自动驾驶、图像识别等实际场景的模型开发与部署。; 阅读建议:此资源以实操为导向,建议边读边练,严格按照步骤执行代码,重点关注环境匹配、数据格式规范与训练参数设置,结合文中避坑提示排查问题,深入理解每一步背后的原理,从而真正掌握YOLO系列模型的应用核心。

2026-01-12

【计算机视觉】基于YOLO与大模型的工业巡检自动化:缺陷检测与报告生成全链路技术

内容概要:文章详细介绍了“YOLO+大模型”在工业巡检报告自动化生成中的全链路落地实践,涵盖从图像采集、缺陷检测、特征结构化到大模型生成报告的完整技术流程。重点阐述了YOLO11在工业小目标检测中的优化策略(如Res2Net主干网络、CA注意力、BiFPN特征融合),以及LLaVA等大模型通过Prompt工程和领域微调生成结构化巡检报告的方法。系统采用边缘端实时检测、云端生成报告的协同架构,已在煤矿输送带、光伏组件等场景成功应用,显著提升巡检效率并降低人工成本。; 适合人群:具备计算机视觉与AI基础,从事工业智能化、智能制造、边缘计算等相关领域的研发人员和技术管理者,尤其适合有实际项目落地需求的工程师(工作年限1-3年以上); 使用场景及目标:① 实现工业场景下的高效、准确缺陷识别与结构化报告自动生成;② 探索YOLO系列模型在复杂环境中小目标检测的优化路径;③ 构建基于大模型的工业语义理解与自然语言生成系统,推动预测性维护发展; 阅读建议:本文侧重实战经验与工程优化细节,建议结合自身工业场景特点,重点关注数据预处理、模型轻量化、边缘部署及大模型可控生成等关键技术环节,并参考文中的参数设置与架构设计进行复现与调优。

2026-01-12

【Python爬虫】从基础爬取到分布式架构的技术演进:动态网页应对与反爬策略实战应用

内容概要:本文系统介绍了Python爬虫从入门到分布式进阶的全过程,涵盖简单爬虫的核心三步(发请求→解析数据→存数据)、动态网页爬取(使用Playwright模拟浏览器)、应对反爬机制(IP池与动态请求头)以及基于Scrapy+Redis的分布式爬虫搭建。通过真实案例(如爬取知乎、京东商品、新闻数据)演示各阶段技术应用,并总结常见问题与解决方案,最后强调爬虫合规的重要性。; 适合人群:具备一定Python基础,对网络爬虫感兴趣的初学者及有一定经验希望进阶至分布式爬虫的开发者,尤其适合工作1-3年的研发人员; 使用场景及目标:①掌握从单页静态数据抓取到大规模动态网页采集的技术演进路径;②学习如何应对反爬策略并构建高效稳定的分布式爬虫系统;③理解爬虫项目中的工程化设计与实际部署问题; 阅读建议:建议读者结合文中代码实例动手实践,逐步完成从简单爬虫到分布式系统的搭建过程,重点关注每个阶段的问题排查与优化技巧,同时始终遵守网络爬虫的法律法规与道德准则。

2025-12-27

网络爬虫基于Python的高校研招信息聚合系统设计:自动化采集与实时提醒在教育信息获取中的应用

内容概要:本文详细介绍了一个基于Python的高校研究生招生信息聚合系统的构建过程,旨在帮助考研学生高效获取分散在各大高校官网的招生信息。系统通过requests、BeautifulSoup和Playwright等工具实现静态与动态网页的混合爬取,能够自动采集招生简章、专业目录、参考书目、复试分数线、调剂信息等核心内容,并利用SQLite和CSV进行数据存储。结合schedule库实现定时爬取,通过plyer和smtplib实现桌面弹窗与邮件双重提醒机制,确保用户及时掌握最新动态。同时,系统配备Tkinter构建的简易图形界面,支持按高校和信息类型筛选检索,提升信息查阅效率。作者还分享了实际开发中的常见问题与解决方案,如页面结构差异、编码乱码、相对路径处理及反爬策略应对,增强了系统的稳定性和兼容性。最后强调了爬虫使用的合规性原则,确保数据采集合法、合理、可控。; 适合人群:具备一定Python编程基础,正在备考研究生或对网络爬虫感兴趣的初学者及开发者;适用于希望提升信息获取效率的学生和技术爱好者。; 使用场景及目标:①解决考研过程中需频繁手动访问多个高校官网查找招生信息的痛点;②实现招生信息的自动化采集、聚合展示与实时提醒;③为个人备考提供可靠的数据支持,提高信息整理效率与决策准确性。; 阅读建议:此资源以实战为导向,建议读者边学边练,结合文中提供的完整代码逐步部署系统,并根据目标高校网站结构调整选择器逻辑。同时关注合规爬取原则,合理控制请求频率,避免对目标网站造成压力。

2025-12-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除