矩阵中的概念还是很多的,时间一长很容易忘记,这里做一个摘录,已备不时之需。
线性空间
1. 生成子空间
设x1,x2,⋯,xm
是数域
K
上的线性空间
容易验证 V1是V的一个线性子空间,记为
2. 矩阵的值域
设 A=(aij∈Rm×n),以ai(i=1,2,⋯,n)表示A的第i个列向量,称子空间L(a1,a2,⋯,an)为矩阵A的值域(列空间),记为
即 Ax为A的列向量线性组合,所以有
同理可定义 AT 的值域(行空间)
3 核空间
设
A=(aij)∈Rm×n
,称集合
{x|Ax=0}
为
A
的核空间(零空间),记为
n(A) ,即 n(A)=dimN(A) ,则很容易有下列公式:
4 正交
定理一:对于欧式空间
Vn
的任一基
x1,x2,⋯,xn
都可以找到一个标准正交基
y1,y2,⋯,yn
.换言之,任意非欧式空间都有正交基和标准正交基。
该定理可用Schmidt正交化方法构造性证明。
正交矩阵:实方阵
Q
满足
显然
Q
是正交矩阵的充要条件是,它的列向量是两两正交的单位向量,正交向量是非奇异的,从
正交矩阵在标准正交基下的矩阵是正交矩阵,但是在别的基下的矩阵可能是正交矩阵,也可能不是
5对称性与对称矩阵
对称变换:设
T
是欧式空间
成立,则 T 为
定理2:欧式空间的线性变换是实对称变换的充要条件是,它对于标准正交基矩阵是实对称矩阵。
定理3:实对称矩阵的特征值都是实数
下面给出简要证明:
设 A 是实对称矩阵,
两边取共轭有
由共轭复数的性质有:
取转置,由 A¯=A,AT=A ,得
等式两边右乘 x 得
而 xTx≠0 ,故 λ=λ¯,λ 是实数。
定理4:实对称矩阵不同特征值所对应的特征向量是正交的
简要证明如下:
设
λ1x1=Ax1,λ2x2=Ax2
由于
故
即
但是 λ1≠λ2 故 (x1,x2)=0
6 酉空间
酉空间实际上是实数域
R
上线性空间的扩展,和欧式空间理论很相近,有一套平行的理论。
酉变换:酉空间
则称 T 为
酉矩阵:酉变换在酉空间的标准正交基下的矩阵 A 是酉矩阵,即
Hermite变换:酉空间 V 中的线性变换
则称 T 为
Hermite矩阵: Hermite变换在酉空间的标准正交基下的矩阵 A 是Hermite矩阵,即满足
酉矩阵对应于实数域空间中的正交矩阵,Hermite矩阵对应于实数域空间中的对称矩阵
定理5:
- :设
A∈Cn×n
的特征值为
λ1,λ2,⋯,λn
,则存在酉矩阵
P
,使得
P−1AP=PHAP=⎡⎣⎢⎢⎢⎢⎢⎢λ1∗…λ2⋱⋱∗⋮∗λn⎤⎦⎥⎥⎥⎥⎥⎥
2 设
A∈Rn×n
的特征值为
λ1,λ2,⋯,λn
,且
λi∈R(i=1,2,⋯,n)
则存在正交矩阵
Q
,使得
证明过程略微繁琐,这里就不给出了,一般用数学归纳法证明。
正规矩阵:设
A∈Cn×n
,且等式
成立,则称A为正规矩阵。那么上面的定理可以进一步的加强
定理6:
- 设
A∈Cn×n
,则
A
酉相似与对角矩阵的充要条件是
A 为正规矩阵; - 设
A∈Rn×n
,且A的特征值都是实数,则
A
正交相似于对角矩阵的充要条件是
A 为正规矩阵
上面两条定理给出了一个矩阵可以转化为对角矩阵的充要条件
范数篇
- 向量范数
向量范数的等价性:设
∥x∥α
和
∥x∥β
为有限维线性空间
V
的任意两种向量范数,则存在两个与向量
证明略
特殊情况有
- 矩阵范数
定义:设 A∈Cm×n ,定义一个实值函数 ∥A∥ ,他满足以下三个条件:
1.非负性:当 A≠O 时, ∥A∥>0 ;当 A=O 时, ∥A∥=0
2.齐次性: ∥αA∥=|α|∥A∥,(α∈C)
3.三角不等式: ∥A+B∥≤∥A∥+∥B∥,(B∈C)
则称 ∥A∥ 为 A 的广义矩阵范数。
若对Cm×n,Cn×l,Cl×m 上的同类广义矩阵,还应满足以下一个条件:
4.相容性: ∥AB∥≤∥A∥∥B∥
定理:已知
Cm和Cn
上的同类范数
∥⋅∥,
设
A∈Cm×n
,则函数
下面是三种常用的范数
设 A=(aij)m×n∈Cm×n,x=(ξ1,ξ2,⋯,ξn)T∈Cn ,则从属于向量 x 的三种范数
-
∥A∥1=maxj∑i=1m|aij|
-
∥A∥2=λ1−−√,λ1为AHA的最大特征值;
-
∥A∥∞=maxi∑j=1n|aij|
证明:
(1)设 ∥x∥=1 ,则
∥Ax∥=∑i=1m∣∣∣∣∑j=1naijξj∣∣∣∣≤∑i=1m∑j=1n|aij|ξj|=∑j=1n|ξj|(∑i=1m|aij|)
≤(maxj∑i=1m|aij|)∑j=1n|ξj|=maxj∑i=1m|aij|
因此有
∥A∥1=max∥x∥1=1∥Ax∥1≤maxj∑i=1m|aij|
选取 k 使得
∑i=1m|aik|=maxj∑i=1m|aij|
令 x0 为第 k 个单位坐标向量,则有
Ax0=(A1k,a2k,⋯,amk)T
∥A∥1=max∥x∥1=1∥Ax∥1≥∥Ax0∥=∑i=1m|aik|=maxj∑i=1m|aij|
得证
(2) 因为 AHA 是Hermite矩阵,且由
xH(AHA)x=(Ax)H(Ax)=∥Ax∥22≥0
因此 AHA 是半正定的,从而它的特征值为非负,设为
设 λ 为 AHA 的一个特征值,特征向量为 x ,且∥x∥2=1 则
∥Ax∥22=(x,AHAx)=(x,λx)=λ∥x∥22≤λ1
所以有∥A∥2=max∥x∥2=1∥Ax∥2≤λ1−−√
显然当 x 为λ1 的特征向量是取等号。
(3)证明类似于上面,过程略.
谱半径:设
A∈Cn×n
的特征值为
λ1,λ2,⋯,λn
,称
定理:设
A∈Cn×n
,则对
Cn×n
上的任何一种矩阵范数
∥⋅∥
,都有
证明过程很简单,设 Ax=\lambda x
当矩阵 A A 是Hermite矩阵时,\|A\|_2=\rho(A)
因为: \|A\|_2=\sqrt{\max_i|\lambda_i(A^HA)|}=\sqrt{\rho(A^HA)}=\rho^\frac 1 2(A^HA)
因为 AH=A
固有 ∥A∥2=ρ(A)
定理:设 A∈Cn×n ,对于任意的正数 δ ,存在某种矩阵范数 ∥⋅∥M ,使得
证明略。
- 矩阵的非奇异性条件
定理:设 A∈Cn×n ,且对 Cn×n 上的某种矩阵范数 ∥⋅∥ ,有 ∥A∥≤1 ,则矩阵 I−A 非奇异,且有∥(I−A)−1∥≤∥I∥1−∥A∥
证明:
若 det(I−A)=0 ,则其次线性方程组 (I−A)x=0 有非零解 x0 ,则有
(I−A)x0=0
则∥x0∥V=∥Ax0∥v≤∥A∥∥x0∥V<∥x0∥V
出现矛盾,故 det(I−A)≠0 ,矩阵 I−A 非奇异.
再由 (I−A)−1(I−A)=I ,可得
(I−A)−1=I+A(I−A)−1
于是∥(I−A)−1∥≤∥I∥+∥A∥∥(I−A)−1∥
即∥(I−A)−1∥≤∥I∥1−∥A∥
当 A 很小时,(I−A)−1 与单位矩阵的逼近成都由下面定理给出
定理:设 A∈Cn×n ,且对 Cn×n 上的某种矩阵范数 ∥⋅∥ ,有 ∥A∥≤1 ,则
∥I−(I−A)−1∥≤∥A∥1−∥A∥
证明:因为 ∥A∥≤1 ,s所以 (I−A)−1 存在,由
(I−A)−I=−A 右乘 (I−A)−1 得
I−(I−A)−1=−A(I−A)−1
两边取范数有
∥I−(I−A)−1∥=∥−A(I−A)−1∥≤∥A∥1−∥A∥
推论:设 A∈Cn×n 非奇异, B∈Cn×n ,且对 Cn×n 上的某种矩阵范数 ∥⋅∥ ,有 ∥A−1B∥<1 ,则 A+B 非奇异
证明很简单,由于 ∥A−1B∥<1 ,所以 ∥−A−1B∥<1 ,再用上面的定理的证。
矩阵分析
- 矩阵收敛
定义:设 A 为方阵,且当k→∞ 时,有 Ak→O ,则称 A 为收敛矩阵
定理:Ak→O(k→∞) 的充要条件是 ρ(A)<1
证明:充分性由前面的定理有∥A∥M≤ρ(A)+δ
对于 δ=12[1−ρ(A)] 则
∥A∥≤12[1+ρ(A)]<1
于是 ∥Ak∥M≤∥A∥kM→0 ,故 Ak→O
必要性:已知 Ak→O ,设 λ 是A的任一特征值,对应的特征向量为 x ,则有Ax=λx(x≠0) ,因为
λkx=Akx→0所以 λk→0 ,从而 |λ|<1 故 ρ(A)<1
推论:
Ak→O(k→0)
的充分条件是只要有一种矩阵范数
∥⋅∥
,s使
∥A∥<1
证明很简单,
ρ(A)≤∥A∥<1
,由前面的定理立马得出结果。
- 矩阵级数
定义: