题目描述
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。
说明:不允许修改给定的链表。
进阶:
你是否可以使用 O(1) 空间解决此题?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/linked-list-cycle-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路1 – 哈希表
思路分析
遍历链表中的每一个节点,若不存在该节点,则加入哈希表,若哈希表中存在该节点,则返回该节点
代码1
// // 哈希表 时间复杂度O(n) 空间O(N)
HashSet seen = new HashSet<ListNode>();
ListNode pos = head;
while (pos != null){
if(seen.contains(pos)){
return pos;
}else {
seen.add(pos);
pos = pos.next;
}
}
return null;
思路2 快慢指针法
思路分析
定义两个指针:slow ,fast
初始化两个指针:slow 和fast 都从head开始
步进:slow 每次走一步,fast每次走2步
若有环,则肯定会相遇 即 slow == fast
如何确定入环的位置?
x:从头节点到第一个入环的位置 -->要求的节点
y:从入环位置到相遇位置的距离
z:从相遇位置到入环位置的距离
当两指针相遇时,有:
fast指针走过的距离:x+n(y+z)+y;
n:fast走过了n圈才与slow相遇
slow指针走过的距离:x+y
slow指针每次走一步,fast每次走两步,则有 fast = 2slow,即x+n(y+z)+y = 2(x+y) ----式①
明确:我们要求的是x
由式①可得 x = n(y+z) - y;
即:x = (n-1)(y+z) +z;
由题意,若有环, n≥1
当 n = 1 时,x = z; 也就是头节点到入环节点的距离 == 相遇位置到入环节点的距离
定义两个指针 index1,index2;
index1初始化为head;
index2初始化为相遇节点,即slow;
每次向前走一步,当index1 = index2 时,就能找到入环位置;
当n>1 时,效果相同,同样采用上述方法,不过:index2在走了(n-1)个圈后,再和 index1相遇
代码2
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode detectCycle(ListNode head) {
// // 哈希表 时间复杂度O(n) 空间O(N)
// HashSet seen = new HashSet<ListNode>();
// ListNode pos = head;
// while (pos != null){
// if(seen.contains(pos)){
// return pos;
// }else {
// seen.add(pos);
// pos = pos.next;
// }
// }
// return null;
//快慢指针
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null){
slow = slow.next;
fast = fast.next.next;
if(slow == fast){ //有环,相遇
ListNode index1 = head;
ListNode index2 = fast;
while( index1 != index2){
index1 = index1.next;
index2 = index2.next;
}
return index1;
}
}
return null;
}
}