数据挖掘
Q_S_Y_Q
这个作者很懒,什么都没留下…
展开
-
(EM算法)The EM Algorithm
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果转载 2017-01-05 16:51:43 · 743 阅读 · 1 评论 -
牛顿法、雅克比矩阵、海森矩阵
牛顿法、雅克比矩阵、海森矩阵一般来说, 牛顿法主要应用在两个方面, 1, 求方程的根; 2, 最优化。 1,求方程的根 其原理便是使用泰勒展开,然后去线性部分,即: (1) 然后令上式等于0,则有: (2) 经过不断迭代: (3)转载 2017-01-11 17:07:27 · 1632 阅读 · 0 评论 -
机器学习基础之----感知机----
写在前面的话 由于博主最近在某国企工作,业余时间较多,于是蒙生写博客的想法,一来是做读书笔记,二来也希望可以和更多热爱ML和DL的人一起交流学习。本文将从四个方面介绍感知机的内容: 1,感知机总体介绍 2,叙述感知机的学习策略 3,介绍感知机的学习算法 4,证明算法的收敛性一,感知机总体介绍 OK,进入正题。感知机(Perceptron)是二分类的原创 2017-01-12 10:59:05 · 876 阅读 · 1 评论 -
spark性能优化-数据倾斜调优
调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 数据倾斜发生时的现象 1、绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两原创 2017-05-10 19:38:57 · 405 阅读 · 0 评论 -
bp算法python实现(bpnn.py)
import math import randomrandom.seed(0)def rand(a, b): return (b - a) * random.random() + adef make_matrix(m, n, fill=0.0): mat = [] for i in range(m): mat.append([fill] * n)转载 2017-05-10 19:40:01 · 3423 阅读 · 0 评论