poj2663

描述:

有一个3*n(0<=n<=30)的棋盘,用1*2的多米诺骨牌进行平铺。我们可以列举出很多种铺满的方法,本题要求我们计算铺满时的方法总数。例如:

3*2的棋盘,被1*2的多米诺骨牌平铺共有3种方法。

当n越大,越难用枚举法计算方法总数。

方法:

我们需要发现n不同时相互的规律。不难发现,当n为奇数时,平铺方法总数为0,因为不可能铺满棋盘。当n为偶数时,我们可以总结下面规律:

例如对上述棋盘,我们将棋盘分为左右两部分,右边部分是一个整体,不可拆散的。当右边部分为3*2时,

由上述可知,右边部分有3种可能,那么此时f(n)+=f(n-2)*3。当右边部分为3*4时,

右边是一个整体,并且不可拆散的做法只有两种

(灵魂画手。。。)和上图旋转180度的做法。所以f(n)+=f(n-4)*2。

当继续往下枚举时我们发现,当右边部分为4至m(m>=4且m为偶数)时,做法只有2种。至此,我们可以总结出规律为:

f(n)=f(n-2)*3+f(n-4)*2+f(n-6)*2+…+f(0)*2,注意f(0)=1

代码:

#include <iostream>
#include<string.h>
using namespace std;

int ans[35];

void dp(){
    ans[0]=1;
    ans[2]=3;
    for(int i=4;i<31;i+=2){
        ans[i]+=ans[i-2]*3;
        int j=4;
        while(j<=i){
            ans[i]+=ans[i-j]*2;
            j+=2;
        }
    }
}

int main()
{
    memset(ans,0,sizeof(ans));
    dp();
    int input;
    while(cin>>input){
       if(input==-1) break;
       cout<<ans[input]<<endl;
    }
    return 0;
}

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值