NLP
only111
这个作者很懒,什么都没留下…
展开
-
隐马尔可夫模型(一)
马尔可夫链马尔可夫链是指具有马尔可夫性质的随机过程。在过程中,在给定当前信息的情况下,过去的信息状态对于预测将来状态是无关的。在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变成另外一个状态,也可以保持当前状态不变。状态的改变叫做转移,状态改变的相关概率叫做转移概率。马尔可夫链中的三元素是:状态空间S、转移概率矩阵P、初始概率分布π。案例:从上面两个...原创 2018-08-19 23:06:43 · 1682 阅读 · 0 评论 -
最大熵模型
P(概率越大) -> H(X)熵值越小 === x越大---> y绝对值越小 x<=1P(概率越小) -> H(X)熵值越大 === x越小---> y绝对值越小 x<=1正好对数函数可以表达这个意思log(p(x)) -> p(x)*log(p(x)) 又因为 p(x)*log(p(x)) 为负数 -->加上负...原创 2018-08-17 20:38:50 · 518 阅读 · 0 评论 -
第一章 1.1概率论的基本概念
第一章 概率论的基本概念(一)样本空间对于随机试验,尽管在每次试验之前不能预知试验的结果,但是试验的所有可能的结果是已知的。我们将随机试验 E 的所有可能的结果组成的集合称为 E 的样本空间(Sample space),记为 S (或Ω) 。样本空间的元素,即 E 的每一个结果,称为样本点。如果试验 E 的可能的结果是 e1,e2 ,…,en ,…则这些结果就是 E ...原创 2018-08-17 13:54:58 · 327 阅读 · 0 评论 -
第一章 1.9 条件概率(3)(全概率公式,贝叶斯公式)
(一)全概率公式 (二)贝叶斯公式转载 2018-08-17 17:14:13 · 365 阅读 · 0 评论 -
第一章 1.8 条件概率(2)(乘法公式)
转载 2018-08-17 16:52:36 · 245 阅读 · 0 评论 -
第一章 1.7 条件概率(1)
(一) 条件概率条件概率是概率论中的一个重要而实用的概念。所考虑的是在一个事件已经发生的条件下, 另一事件发生的概率。(二) 乘法定理 (三) 全概率公式和贝叶斯公式 ...转载 2018-08-17 16:44:01 · 259 阅读 · 0 评论 -
第一章 1.6 等可能概型(古典概型1)
抛掷硬币和骰子的试验具有以下两个共同特点:试验的样本空间包含有限个元素:掷硬币的试验的样本空间S={ 正面(H), 反面(T) }抛掷骰子的试验的样本空间 S={ 1, 2, 3, 4, 5, 6 }试验中每个基本事件发生的可能性相同:掷硬币的试验中,H和T出现的可能性都是1/2。抛掷骰子的试验中,每一点出现的可能性都是1/6。 具有以上两个特点的试验大量存在。这种试...原创 2018-08-17 16:19:40 · 745 阅读 · 0 评论 -
第一章 1.5 概率的基本性质
在计算随机事件的概率时,常常需要计算事件中包含的样本点的个数,这就需要掌握计数的方法。这一讲介绍计数的几种方法: 加法原理与乘法原理、排列与组合。一、加法原理与乘法原理加法原理 分类计数 设完成一件事有k类方法,每类分别有 m1, m2,…, mk 种方法, 而完成这件事只要选择任一类方法中的任何一种方法,则完成这件事的方法有 m1+m2+…+mk 种 ...转载 2018-08-17 16:07:10 · 321 阅读 · 0 评论