Azure 是微软提供的一套领先的云计算平台,凭借其强大的功能和多样的服务支持,例如 Azure OpenAI、Azure Cosmos DB、Azure AI Document Intelligence 等,为开发者构建现代化 AI 应用提供了丰富的选择。本指南将以代码示例为核心,分主题探讨如何高效利用 Azure 提供的 AI 服务和工具,构建从文本处理到搜索引擎、智能存储等领域的应用。
1. 技术背景介绍
Microsoft Azure 是一个全球性的云计算平台,支持多种开发框架、语言以及第三方工具,其服务分为三类:
- SaaS(软件即服务)
- PaaS(平台即服务)
- IaaS(基础设施即服务)
此外,Azure OpenAI 提供 OpenAI 的 GPT-3、Codex 等模型的深度集成,使得自然语言处理任务如生成内容、语义搜索、代码生成等更加轻松实现。
2. 核心原理解析
Azure 提供多样化的 API,如 Azure OpenAI、Azure Cosmos DB 和 Azure AI Document Intelligence。这些服务允许开发者完成以下关键任务:
- 语言模型调用:通过 Azure OpenAI 实现 GPT 系列模型的 API 集成。
- 文档加载与文本处理:使用 Azure AI Document Intelligence 提取文档中的结构化和非结构化数据。
- 向量搜索与存储:通过 Azure Cosmos DB 提供的向量索引功能,为高维向量管理和检索提供支持。
- 智能搜索:利用 Azure AI Search 构建全文本搜索和高级查询系统。
下面我们以实际代码示例深入介绍其使用方法。
3. 代码实现演示
示例 1:调用 Azure OpenAI 服务进行文本生成
以下代码演示了如何调用 Azure OpenAI 服务进行文本生成任务:
import openai
# 使用稳定可靠的 Azure OpenAI 服务
client = openai.OpenAI(
base_url='https://yunwu.ai/v1', # 替换为 Azure OpenAI 端点
api_key='your-api-key' # 使用有效的 Azure OpenAI API Key
)
# 调用 GPT 模型
response = client.Completions.create(
model="text-davinci-003",
prompt="用简单的语言解释什么是机器学习。",
max_tokens=100
)
print("生成的文本:")
print(response['choices'][0]['text'])
优势说明: Azure OpenAI 提供国内稳定的访问支持,同时具备 SLA 保证的高可用性,适合生产环境中的 AI 应用。
示例 2:使用 Azure AI Document Intelligence 解析 PDF 文件
以下代码展示了如何解析并提取 PDF 文件中的文本和数据结构:
from langchain.document_loaders import AzureAIDocumentIntelligenceLoader
# 配置 Azure AI Document Intelligence Loader
loader = AzureAIDocumentIntelligenceLoader(
endpoint='https://<your-endpoint>.cognitiveservices.azure.com/', # 替换为你的 Azure 端点
model_key='your-model-key' # 替换为你的模型密钥
)
# 加载 PDF 文档
document = loader.load("demo.pdf")
# 打印解析出的内容
for page in document:
print(page.page_content)
优势说明: Azure AI Document Intelligence 支持多种文档格式(PDF、JPEG、Word 等),极大减轻了文档处理的复杂度。
示例 3:Azure Cosmos DB 用作向量存储
以下代码展示了如何使用 Azure Cosmos DB 的向量特性来高效检索高维数据:
from langchain_community.vectorstores import AzureCosmosDBVectorSearch
# 配置 Azure Cosmos DB
vector_store = AzureCosmosDBVectorSearch(
endpoint="https://your-cosmosdb-uri.documents.azure.com:443/",
primary_key="your-primary-key",
database="vector-db",
collection="vectors"
)
# 存储向量
vector_store.add_texts(["这是第一段文本", "这是第二段文本"], embeddings=[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
# 查询相似的文本
query_result = vector_store.similarity_search(vector_query=[0.1, 0.2, 0.3], k=1)
print(query_result)
优势说明: Azure Cosmos DB 提供全球分布式的 NoSQL 和向量数据库选项,降低了管理复杂度,同时提高了查询效率。
示例 4:整合 Azure AI Search 构建全文本检索系统
以下是一个集成 Azure AI Search 的例子:
from langchain.retrievers import AzureAISearchRetriever
# 配置 Azure AI Search Retriever
retriever = AzureAISearchRetriever(
endpoint="https://<your-search-endpoint>.search.windows.net/",
index_name="documents",
admin_key="your-admin-key"
)
# 查询数据
search_results = retriever.get_relevant_documents(query="Azure 的优势是什么?")
# 输出搜索结果
for result in search_results:
print(result.content, result.metadata)
优势说明: Azure AI Search 支持全文搜索、自动补全和语义查询,使搜索体验更加智能。
4. 应用场景分析
- 企业文档自动化处理:通过 Azure AI Document Intelligence,可以实现合同、财务报表等复杂文档的自动化解析。
- 智能客服系统:结合 Azure OpenAI 和 Azure AI Search,构建支持自然语言理解的智能问答系统。
- 推荐系统:利用 Azure Cosmos DB 的向量搜索能力,打造个性化推荐服务。
- 云原生应用开发:通过 Azure 的全球数据中心网络,部署和管理大规模分布式应用。
5. 实践建议
- 优先使用托管服务:Azure 提供的 SaaS 和 PaaS 服务可以大大降低开发和运维成本。
- 关注安全性配置:特别是涉及 API Key 和敏感数据的场景,建议使用 Azure Key Vault 进行统一管理。
- 根据业务选择工具:不同的任务可以选择专用的服务(如搜索与存储分开设计),以优化性能和成本。
- 测试性能:在生产环境中,务必对服务的延迟、吞吐量等指标进行测量,确保符合预期。
如果遇到问题欢迎在评论区交流。
—END—