量子位

追踪人工智能新趋势,报道科技行业新突破

  • 博客(10735)
  • 收藏
  • 关注

转载 6999起!小米史上最贵Ultra来了:告别256G,影像硬刚iPhone 17 Pro Max

先说主摄,17Ultra的主摄采用了1英寸传感器光影猎人1050L,配有3.2微米超大像素和f/1.67大光圈,综合进光量是iPhone 17 Pro Max的两倍。还是用一张图总结,徕卡版比普通版增加了大师变焦环等专享配置,16+512GB卖7999,1TB卖8999,都是比相同容量的普通版本多500元。价格方面,除了起步价的12+512GB版本卖6999, 还有16+512GB和16GB+1T两种配置,分别是7499元和8499元。

2025-12-25 21:32:07 9

转载 用AI代码替换Windows里每一行C/C++!微软回应了

如果AI这个中间层,能够承接并消化上述转换成本,那么无论是微软,还是Windows开发者,掉头的阻力都会被大大削弱。更现实的是,在许多细分领域,Rust缺乏足够成熟的解决方案,开发者需要投入大量时间积累经验,才能勉强追上C/C++多年沉淀下来的生态基础。如果员工不遵守这些规矩,硬是要超出预先的内存分配,跑去别人工位,甚至化身「老油条」,赖在新人的办公桌不走,就会打乱公司运转。同时,由于Rust与C/C++具备良好的互操作性,微软可以直接调用现有Windows API,循序渐进地替换旧代码,而。

2025-12-25 21:32:07 6

转载 2500元/月雇个总监级AI数字员工,贵吗?

在“2025全球开发者先锋大会(GDPS2025)·房地产产业人工智能大会”上,专注于不动产垂直领域AI原生应用的深度智联发布了“地产AI-Ready”战略,推出覆盖决策、营销、服务三大场景的“克而瑞·数字员工”战队,并首次完整呈现“1个专属空间+4大核心能力+3层应用场景”的系统级架构。据介绍,不久后,深度智联还将针对物业、康养、长租公寓等各类房地产细分市场推出适用不同工作场景的数字员工,它们将根据企业的业务需求,灵活组建成各种“作战单元”,“数字员工战队”即将全面走上房产业各类业态的不同岗位。

2025-12-25 19:48:39 6

原创 单卡2秒生成一个视频!清华联手生数开源TurboDiffusion,视频DeepSeek时刻来了

TurboDiffusion对其采用W8A8量化(权重8位,激活8位),并在128×128的块粒度上分块处理,充分利用RTX 5090的INT8 Tensor Core。此外,腾讯混元、字节豆包、阿里Tora、生数Vidu、智谱清影、百度飞桨、昆仑万维、Google Veo3、商汤、vLLM 等国内外头部科技企业及团队,均已在核心产品中应用该技术,凭借其卓越性能创造了可观的经济效益。注意力机制可以说是扩散模型中最耗时的部分之一,传统实现使用 FP16(半精度浮点),计算量大、显存占用高。

2025-12-25 19:48:39 466

转载 字节Seed发布最强数学模型:一招“打草稿”,IMO银牌变金牌

而字节自己的前代模型,当时的成绩是3天完成了6道题目中的4道,以及一道题的部分证明,达到银牌成绩。Mathlib搜索工具:类似于程序员查阅技术文档,模型可以主动检索Lean庞大的数学库 Mathlib,寻找可用的定理和定义,而非依赖不可靠的隐式记忆。值得关注的是,Seed Prover 1.5强调了大规模强化学习给数学模型带来的性能提升,也证明,在推理阶段增加计算资源,可以显著提高解题率。的模型,在16.5小时内,顺利解决IMO 2025的前5道题目,在仅失一题的情况下拿到35分,达到今年IMO的金牌线。

2025-12-25 14:08:00 12

转载 揭秘Agent落地困局!93%企业项目卡在POC到生产最后一公里|亚马逊云科技陈晓建@MEET2026

更重要的是,Strands Agents采用开放架构,不仅适配亚马逊云科技自身的产品,也兼容业界各种流行的开源或商用框架。在年幼时期,大脑还在发育阶段,学习能力最强,几乎不知不觉就能掌握一门语言。边缘设备正日益成为人类生活与工作不可分割的一部分,Strands Agents可以为汽车、游戏、机器人等各类终端提供Agent能力,让Agent不仅能在云端运行,也能在前端智能设备上运行。在整个架构中,工具层包括连接不同信息源的各类协议,以及执行各种行为的代码——比如知识库、数据库、代码库,或者浏览器等外部能力。

2025-12-25 14:08:00 8

转载 攻克长视频生成记忆难题:港大与快手可灵MemFlow设计动态自适应长期记忆,告别快速遗忘与剧情错乱

或者,当你尝试引入一个新角色,AI却在后续的剧情中反复“召唤”这个新人,甚至将多个角色的特征混淆在一起。在涉及多个主体的叙事中,MemFlow不会错误地重复引入已经存在的角色,更不会发生主体混淆的“脸盲”错误。MemFlow获得了物体形象的长期记忆能力。为了评估MemFlow的实际效果,研究团队进行了一系列详尽的定性和定量实验,其结果清晰地展示了该模型在长视频生成领域的性能表现。这些僵化的、非自适应的记忆策略,无法应对交互式创作中流动的、不可预测的叙事需求,这正是导致交互式长视频生成一致性差的原因。

2025-12-25 08:27:04 7

转载 LeCun哈萨比斯神仙吵架,马斯克也站队了

显然,一个经过良好训练的人脑,如果配合无限量的纸和笔,是图灵完备的。就是说,哈萨比斯所构想的“理想的图灵机”对解决现实问题几乎没有意义,因为真正的智能必须在有限资源下高效运作——而人脑的进化恰恰是资源约束下高度优化的结果。但从图灵机的理论意义上讲,通用性的核心在于,只要给予足够的时间、内存(及数据),就能够学习任何可计算的内容。当然,马斯克的站队可能也有别的原因。但是在实际的系统当中,“天下没有免费的午餐”这个道理是无法回避的——任何实际且有限的系统,在其所学目标分布周围,都必然存在一定程度的专门化。

2025-12-25 08:27:04 7

转载 黄仁勋200亿美元带走「TPU核心班底」

而Groq的技术专长恰恰在推理领域,其自研的语言处理单元(LPU)以超低延迟和高能效著称,官方声称运行大模型的速度比传统方案快10倍,能耗却只有十分之一。这些交易中,有时核心只是一个关键人物,比如谷歌请回Transformer论文作者Shazeer,协议中授权Character.ai的模型谷歌也用不太上,更多是把团队开发的训练技巧用于强化Gemini。交易后,Scale AI裁减了部分员工,并调整业务方向。25年10月,苹果吸收了Prompt AI核心团队,还是截胡了马斯克的收购抢来的,交易金额未披露。

2025-12-25 08:27:04 6

原创 用编程大模型登顶开源第一后,智谱GLM团队被拷问了3小时

请基于当前目录准备的素材(下载 https://z-cdn.chatglm.cn/temp/Grazy%20Dave.mp3 当作游戏音乐, 下载 https://z-cdn.chatglm.cn/temp/pvc-images.zip 目录下的各类植物与僵尸静态/GIF图片、Pea.png/PeaSnow.png豆子素材、Shop.png/Card.png界面素材及Sun.gif),做一个《植物大战僵尸》游戏。除此之外,在AMA的中,智谱团队说了一句让人期待的话:“我们会为了AGI在明年做更多的贡献。

2025-12-24 20:46:04 289

转载 训练仍有巨大的Scaling空间!智源研究院王仲远:视频数据还未被充分利用 | MEET2026

再比如说左右视角转换,因为Emu3.5是从视频中学习,它对物理世界,对于时间、空间、物理的知识有了更加充分地理解,所以能够达到更好的理解和生成的效果。前几年是大语言模型的预训练的Scaling,过去这两年是后训练的Scaling,在多模态这块,由于我们知道海量的多模态数据还没有被有效地使用,因此依然有非常大的Scaling的空间。更为关键的是,像Emu3.5采用的是自回归的架构,因此能够复用现有所有针对大语言模型的基础设施,并且Emu3.5现在才只是34B的模型,对比大语言模型依然有千亿、万亿的广阔空间。

2025-12-24 15:20:00 8

转载 Bengio不认同Hinton:「水管工」人类也保不住

要知道我会生病、有情绪,每天需要睡8小时,从未来的角度看,我似乎没什么“用处”,但让智商1000的“斯蒂芬”负责一切,又让人不安。但机器人技术的落后只是暂时的,之所以落后,部分原因是没有像互联网那样庞大的“体力行为数据集”(互联网积累了大量人类的文化和智力产出数据),但随着企业部署更多机器人,数据会不断积累,最终机器人也会在体力工作领域大规模替代人类。我能理解他们的担忧,因为我以前也有类似的想法,觉得谈论灾难性风险会“威胁”AI领域的发展,所以当有人说“你的工作可能有害”时,第一反应是抗拒。

2025-12-24 15:20:00 11

转载 国产AI4S创业头雁再获8亿投资!深势科技完成C轮,产品已服务300万科学家

团队所展现的长远战略眼光与高效执行力,进一步强化了我们对其未来发展的信心。基于这样的新范式,赋能全球研发体系的智能化升级,将科学家从繁杂重复的劳动中解放,专注于创造性的灵感迸发,从而系统性提升人类科学发现及应用落地的进程,让全人类每年2.8万亿美元、近1亿全职工作当量的科研及研发投入产生更强的创新效能。通过本轮融资,深势科技将聚焦提升这一引擎在真实科研场景中的可用性与演进能力,一方面推动前沿科学能力的持续涌现,另一方面加速其在生命科学、物质科学等领域的落地应用,促进面向各领域的“AI科学家”不断涌现。

2025-12-24 11:32:41 11

转载 不装了!LeCun哈萨比斯神仙吵架,马斯克也站队了

显然,一个经过良好训练的人脑,如果配合无限量的纸和笔,是图灵完备的。就是说,哈萨比斯所构想的“理想的图灵机”对解决现实问题几乎没有意义,因为真正的智能必须在有限资源下高效运作——而人脑的进化恰恰是资源约束下高度优化的结果。但从图灵机的理论意义上讲,通用性的核心在于,只要给予足够的时间、内存(及数据),就能够学习任何可计算的内容。当然,马斯克的站队可能也有别的原因。但是在实际的系统当中,“天下没有免费的午餐”这个道理是无法回避的——任何实际且有限的系统,在其所学目标分布周围,都必然存在一定程度的专门化。

2025-12-24 11:32:41 12

转载 现场围观腾讯广告算法大赛,我都想入职了

这样一来,看着排行榜里明明白白的分数,既避免了在海量简历里大海捞针,错过真正的技术好苗子,又能跳出“纸上谈兵”的局限,直观检验学生的真实技术能力和落地实操水平,最终找到贴合需求的硬核人才。的方案核心在于大规模序列建模与工程可落地性。赛题之所以敢贴近实战,并不是因为难度设计得激进,而是因为背后已经有成熟系统在跑,况且,腾讯有非常庞大的用户盘,有足够多的工程经验和数据基础兜底。所以,到了决赛阶段,留下来的已经不是“某一次跑分跑得巧”的队伍,而是能在数据规模和目标复杂度持续升级的情况下,方案依然成立的那一批人。

2025-12-24 11:32:41 10

转载 2025最大AI赢家的凡尔赛年度总结,哈萨比斯Jeff Dean联手执笔

谷歌在机器人技术和视觉理解方面的研究,也将AI Agent带入了物理世界和虚拟世界,比如基础性的Gemini Robotics模型、更先进的Gemini Robotics 1.5,以及Genie 3的推出,其中。Gemini 3 Flash的质量超越了谷歌之前的Gemini 2.5 Pro规模模型的能力,价格却只有它的一小部分,且延迟显著降低,延续了Gemini时代的趋势——这一年里,谷歌在构建AI资源和工具方面取得了进展,这些资源和工具为研究人员赋能,帮助他们在医疗健康领域理解、识别和开发新的治疗手段。

2025-12-24 08:42:10 9

转载 Science打脸“赢在起跑线”!少年天才90%成年后止步于顶尖水平之下,34000世界级人才成长轨迹研究结果

在不同领域的多样化学习经历可能从三个方面扩展一个人未来的长期学习潜力,促进灵活思维和跨领域整合能力、增强对不同学习情境的适应能力、以及帮助学习者理解什么样的学习方法对自己最有效。通过大规模数据追踪,研究团队给出了一个令人意外的答案:无论是体育、国际象棋还是学术领域,早期的“尖子”和成年后的“顶尖人才”之间的重合度都低得惊人。再假设在普通人群中,才华和外貌是完全独立、不相关的。另一项针对美国的研究则表明,12岁时认知能力排名前1%的孩子,与35岁左右收入排名前5%的成年人之间,人群重叠率仅为1%。

2025-12-24 08:42:10 16

原创 AI Coding新王登场!MiniMax M2.1拿下多语言编程SOTA

这一次,它直接甩出了一份硬核成绩单,在衡量多语言软件工程能力的Multi-SWE-bench榜单中,以仅10B的激活参数拿下了49.4%的成绩,超越了Claude Sonnet 4.5等国际顶尖竞品,拿下全球SOTA。这下难度确实上来了,但是好像又太难了,这种水多加面、面多加水的需求,也是实际开发当中经常遇到的情况,所以第三个阶段就是再引入一些新机制,降低一下难度,顺便再加一下视觉特效。M2.1理解了网页版的程序逻辑之后,抓住了所要表达的内容,并最终成功实现了从前端到Python的代码迁移。

2025-12-23 21:40:29 918

原创 智能体落地元年,Agent Infra是关键一环|对话腾讯云&Dify

我其实觉得Agent Infra和AI Infra是交叉的关系,当我们把Agent运行好后,就会发现它的一些不足,然后我们再将产生的数据进行利用,就能对Agent本身和Agent模型进行持续优化。,比如传统软件工程中,Bug就是对规则的违反,而放到Agent工程里,失败其实是对我们意图的误解或概率上的漂移。当前的Infra体系,它更多的是服务于基础大模型本身的能力和智力的进化,而不是业务可用,所以我认为Agent Infra的下一步,一定是从服务好Agent的运行构建到服务好Agent的智能进化。

2025-12-23 12:13:36 878

原创 AI狼人杀终极决战!GPT、Qwen、DeepSeek大乱斗,人类高玩汗流浃背

最后温馨提示,别忘记给自己的Agent取一个炫酷拉风的名字,比如我在排行榜上刷到的“哈基米”、“转生到异世界我一定会成为狼人杀高手”、“不服来战”、“活着”……展开来说,就是淘宝发了个召集令,广邀高校学生和AI开发者,带着自家Agent来真刀实枪碰一场,看看谁的Agent思维更缜密、更会盘逻辑。总之,对于想要学习大模型、AI Agent的同学们,可千万不要错过这次机会,既能精进新技能,还能突破眼界,妙哇~前情提要,4号狼王,7号、10号、11号是狼,2号预言家、5号女巫、8号猎人、12号守卫。

2025-12-23 12:13:36 624

原创 我们走访全国百强三甲医院,发现40%都选了同一家AI公司

众所周知,医院试错空间有限,对幻觉和错误的容忍度接近于零。中层的全科医学文档知识库补充专业细节,在集聚海量文本数据的同时,通过长上下文窗口训练与结构化的高密度语义对齐,使模型习得医学领域的专业表述范式与细粒度语境理解能力。他明确表示,上市之后,公司已经设定了更高的业务增速目标,收入增长将来自多个方向,包括业务规模的持续扩大、单一客户价值的提升,以及产品类别的不断拓展。云知声的医疗AI在生成速度与准确率之间保持稳定平衡,使其能够自然嵌入医生的工作流,不会弄巧成拙,反而成为医生日常工作流里的额外负担。

2025-12-23 11:01:00 782

转载 智谱IPO敲钟前,连夜把开源编程大模型SOTA了

核心编码能力(Code Agent):多语言与终端任务显著增强,SWE-bench Verified 73.8(+5.8)、SWE-bench Multilingual 66.7(+12.9)、Terminal Bench 2.0 41.0(+16.5),支持“先思考、再行动”模式。复杂推理能力(Reasoning):全面提升,HLE(含工具)42.8(+12.4 vs GLM-4.6),MMUL-Pro 84.3,GPQA-Diamond 85.7,数学与推理能力更稳更强。

2025-12-23 08:14:50 13

转载 易烊千玺的华为绿手机,真的AI了

主摄支持10档可变光圈与光学防抖,同时配备红枫原色镜头,并引入多焦段自适应双闪光灯和激光对焦传感器,完整覆盖从成像到对焦的关键环节。红枫原色镜头能在更宽广的光谱范围内,对全局光谱信息进行精准测量,色彩还原准确度大幅提升,拍出来的照片色彩更加真实。该系列的Ultra和Pro版本在外观上采用横向立体堆叠设计,搭载双星镜头模组,就像有两只大眼睛。可以在网上找张想要的天气图片,然后用这个功能把网图的色彩、风格“沾”到自己的照片里来。易烊千玺现身深圳,手里拿的绿手机,几乎第一时间抢走了现场的全部注意力。

2025-12-23 08:14:50 13

转载 硅谷停电干崩谷歌Robotaxi,马斯克贴脸热嘲:特斯拉就没事

在Robotaxi战场上,今年马斯克的一举一动,都把自动驾驶之争推向了新的高潮,大洋两岸更多玩家开始入场,沿着「特斯拉路线」前进,与「Waymo路线」争夺自动驾驶圣杯。Cruise倒下后,Waymo在美国不过才唱了一年独角戏,现在一个技术不输Waymo,体量不惧谷歌,流量更是无人望其项背的对手特斯拉,正式攻上门了。不同点在于,特斯拉的网约车激活了FSD,FSD与主驾的司机人机共驾,在当地收集数据,反哺Robotaxi。更要命的是,因为大范围停电,马路上的红绿灯都不亮了,引发Waymo无人车全面停摆。

2025-12-22 17:30:00 26

转载 为什么Agent总是Demo猛如龙实战一条虫?

这篇论文作者阵容豪华,来自UIUC、斯坦福、普林斯顿、哈佛、UC伯克利等12所高校的三十多位研究者联手,由UIUC的韩家炜教授团队领衔,共同一作Pengcheng Jiang,Jiacheng Lin,Zhiyi Shi为UIUC博士生。在医学问答这种专业领域测试中,T2训练的智能体达到了76.6%的准确率,而A2训练的Search-R1只有71.8%。当遇到新任务、新环境时,不需要重造一个新的智能体,而是通过 “微调自己” 或 “优化工具”,快速适配需求(比如从写普通代码适配到写垂直行业代码)。

2025-12-22 17:30:00 20

转载 全自研仿真GPU求解器x虚实对标物理测量工厂,打造具身合成数据SuperApp,加速具身仿真生态丨光轮智能@MEET2026

原因在于两个维度,首先智驾是视觉游戏,唯一的物理交互只有车辆和地面的动力学,而具身与之不同,具身需要实现力的反馈、逻辑电路和阻尼等多维度,数据也更加复杂,比如说,当我进入家中、拉开冰箱的门,需要实现有力的反馈,这样就多了一个维度,数据也更加复杂。参数辨识,就是指有了资产场景和力的生成后,仿真的机器人跟物理世界的机器人对齐包括控制器参数、钢度、阻尼、物理属性、摩擦模型、质量分布,还包括执行器特征、速度、力矩,以及时序对齐、控制频率、系统延时等等,都要和真实世界进行对齐。

2025-12-22 16:01:00 18

转载 倒反天罡!Gemini Flash表现超越Pro,“帕累托前沿已经反转了”

然而在对话中,Vinyals旗帜鲜明地反驳了这一点,他明确表示,与目前流行的“Scaling 结束论”相反,Gemini 团队通过持续扩大规模实现了巨大的性能飞跃,在他看来,前方依然“看不到墙”(No walls in sight)。在理想状态下,Pro的目标是不计成本地探索智能上限,而Flash则通过蒸馏技术继承Pro的能力,并极致优化延迟、成本和吞吐量,未来Pro甚至可能主要作为一个“生成器”,专门用来生产高质量的Flash模型。

2025-12-22 16:01:00 26

转载 MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

这意味着,生成模型后续接收到的每一个潜在表示,本身就已经是“有语义的”——它不只是一堆像素的压缩,而是携带了“猫”、“沙发”等概念及其关系的结构化表达。翻译成大白话就是,虽然图像/视频生成模型的参数越做越大、算力越堆越猛,但用户实际体验下来总有一种微妙的感受——这些庞大的投入与产出似乎不成正比,模型离完全真正可用总是差一段距离。这和之前的CLIP思路一脉相承,但目标更聚焦。CLIP追求的是广义的图文匹配能力,而VTP则要求Tokenizer在压缩图像为紧凑的潜在编码时,必须保留与文本对齐的语义结构。

2025-12-22 12:38:47 17

原创 天下苦SaaS已久,企业级AI得靠「结果」说话

这意味着,所谓的数智化转型,本质上是要把客户原有的技术地基整体掀掉,重新浇筑一套AI的「钢筋水泥」,再在其上从零开始盖一栋大厦。但现实是,即便有DeepSeek这样的开源模型出现,真能部署私有模型的企业仍是少数。除了为客户量身定制硅基员工的「家庭厨师」,面向更广泛的ToB市场,结果云还在「百汇」端出更高效的「预制菜」——面向各行业、开箱即用的成熟硅基员工。以结果云的硅基客服为例,它可以7x24连轴转,产出约为人类员工的三倍,而成本仅为后者的一半——每月只需5000元,这就是六倍的ROI。

2025-12-22 12:38:47 781

转载 真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

在互联网科技方面,有些互联网大厂自己本身也是云厂商,自己也是AI Infra厂商,但是他们的研究院很愿意直接找到商汤合作,因为我们提供的不只是云平台,我们在上面还提供了算力以外的能力,包含模型推理、模型优化、框架优化这样一些工作,包括专家服务、数据服务。不管是科研机构还是创业公司,在与商汤大装置合作过程当中,我们提供的不仅是一个简单的算力平台,其实是一个立体的能力体系,覆盖模型框架、模型优化、训练与推理体系、开发工具链等,基于我们在AI这个行业的沉淀是能够帮助到客户综合地去提升他们的能力。

2025-12-22 09:40:00 15

原创 火线解析MiniMax招股书!全球领先大模型成本只有OpenAI 1%,果然拳怕少壮

我们觉得真正的AGI,一定要支持多模态的输入、多模态的输出,只是这件事实在太难了,三年多以前,我们刚开始做的时候,创业的时候,那个时候其实完全没有技术路线,我们的想法就是每个模态至少先走通,到了时机合适的时候就可以再起来整合。更早之前,这家公司在资本市场的融资能力同样一流,成立四年间,已吸引米哈游、阿里巴巴、腾讯、小红书、小米、金山、PCG和正大集团等知名机构投资站台,累计融资已超15亿美元。前者提供了导演级的AI视频生产力,只需简单的描述就能将创意变成精彩的视频;

2025-12-21 23:09:57 468

原创 摩尔线程的野心,不藏了

这个算力本是专门为AI学习与开发者打造的个人智算平台,运行基于Linux内核的MT AIOS操作系统,具备多系统兼容能力,并预置完整AI开发环境与工具链,通过虚拟化和安卓容器,可无缝运行Windows与安卓应用。整体来看,当别人还在争论“国产 GPU 能不能用”时,摩尔线程已经通过从软件栈工具、硬件入口到人才培育的全链路布局,让开发者问出另一个问题:“我的下一个项目,能不能全在 MUSA 生态里完成?这意味着,国产显卡正式迈入“光追+AI渲染”的新范式,不仅仅是“算”画面,更是“生成”画面。

2025-12-21 22:11:10 734

原创 SGLang原生支持昇腾,新模型一键拉起无需改代码

当前,昇腾已作为SGLang原生支持的后端之一进入主仓库,随着 SGLang推理引擎的更新,DeepSeek、Qwen、GLM等模型可以在不调整模型参数、不引入额外插件的情况下直接运行,HiCache、Mooncake等系统能力也在对应版本中引入。可以说,这次SGLang AI金融π对呈现的,并非零散技术点,而是一条清晰的推理工程演进路径——从缓存与内存体系,到权重更新、强化学习效率,再到算力与模型生态的协同。将多个连续的小算子合并为一个复合算子,使中间结果保留在高速缓存中,从而显著提升计算效率。

2025-12-21 22:11:10 903

转载 自变量王潜:具身智能是物理世界的独立基础模型|MEET2026

这个视频是自变量实现的非常典型的跨本体泛化任务,我们从夹爪的模型上迁移到高自由度灵巧手上,15个主动自由度,一共20个自由度的高自由度灵巧手,只用了非常少量的样本,这说明模型本质上已经学会了一些基础的物理规律,物体的基本属性,一些基本的动作模式。但这个假设今天是不对的,我们怎么样发明一个真正聪明的AGI,甚至超越人类的ASI,是需要更多的算力,更多的芯片,更多的电力,更多的能源,更多的数据,所有这些东西都是从物理世界中来的。在体系架构上,在System上,在硬件上都会有相应的调整。

2025-12-21 13:45:00 29

转载 LeCun离职前的吐槽太猛了

他曾发表过一篇关于训练多层网络的目标传播算法论文,那时他就衍生想到了反向传播的核心思路,但受时间和精力限制没能做成,后来David Rumelhart和Hinton发表了相关论文,并引用了LeCun的论文。这就是“梯度消失”问题。甚至在很多任务上,其实动物比人类更擅长,而人类之所以自诩为“通用”,只是因为人类自认为能处理所有可以想象到的问题,但很多想象之外的问题,人类其实无法做到。所以LeCun的观点是,单靠LLM或者单靠世界模型是无法实现真正的人类智能的,这需要很多的相关研究支撑,也需要很多时间完成。

2025-12-21 13:45:00 19

转载 清华孙茂松:对工业界而言,大厂可以Scaling,其他玩家重在垂直应用 | MEET2026

经过这几年的发展,机器已经有了相当强的系统一和系统二的能力,这为AI走出文本世界、走向具身智能,奠定了非常重要的基础。如一个3×3的黑块,可能是衣服的一部分,也可能是桌面的一角,还可能是屏幕上的一个图标,语义指向高度不确定。具身是四维,三维空间再加上时间,大千世界、变化无穷,如此复杂的场景靠Next Token Prediction到底能不能做到,不好说。机器想具有智能,一定要让它走到现实世界去,它能够感知这个世界,能和世界打交道,在反馈中得到奖励或惩罚,并据此不断自我调整、自我学习。

2025-12-21 10:00:00 30

转载 库克提拔复旦校友掌舵苹果基础模型!庞若鸣走后涨薪止血,谷歌旧部占据半壁江山

2010年,Giannandrea加入谷歌,后来主管谷歌搜索与AI,被视为推动谷歌搜索与AI深度融合的关键人物之一。2018年,他离开谷歌加入苹果,被任命为“ML与AI战略高级副总裁”,作为最高层管理团队的一员直接向库克汇报。当前AI赛道上,Meta、OpenAI以及Google等,对外释放的信号高度一致:追求超级智能。另一方面,如大家所知,在这一波AI浪潮里,苹果的动作无论从成效还是速度来说,都太过不尽如人意。一方面,庞若鸣离开之后,苹果内部一边重组AI权责,一边启动了针对核心研究人员的留人方案,其中。

2025-12-21 10:00:00 19

转载 对话文远知行韩旭:中国真正的L4只有3家,马斯克不上激光雷达干不过Waymo | MEET2026

文远知行在2021年的时候,在和宇通合作的小巴上实现了Driver out(去安全员),接着在Robotaxi实现Driver out,到目前为止搞了三年多的Driver out,接驳乘客超过50万名了,没有什么重大的责任事故,这些方面都是非常好的成绩。有的车厂或者平台可能是拿了别人家技术,买了别人车刷个喷漆说自己有L4技术,我觉得这是不正确的,你必须要有L4技术有纯无人运营才可以说自己是一家L4公司,否则的话你只是使用别人的L4技术做一家运营公司。

2025-12-20 19:19:00 59

转载 潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

先展示一些互联网上可以查到的案例:中石油的三千亿参数的昆仑大模型,Bloomberg的金融大模型,华为云发布的盘古气象大模型,宝马的优化汽车制造流程的大模型以及李维斯、航空航天、动画、西门子,还有制药行业。开发人员、研究人员不管是石油公司的大模型开发人员还是金融公司、制药公司的,他们应该专注于自己的数据和业务,而不应该花太多时间构建自己的GPU集群、分布式计算、优化器等大模型基础设施的东西。用大模型做To B,最关键的是后训练或Agent化,如果只是调大模型API,大家用的模型都一样,显然没有任何差异性。

2025-12-20 16:01:35 76

转载 ChatGPT文风,原产地肯尼亚

我们要用“首先、其次、最后”来构建逻辑,要用“此外、然而、因此”来精确转折,要用“光辉灿烂”、“精疲力竭”这样的“好词”来展现词汇量。所以,当AI为了显得“权威”和“可信”而输出时,它的文风自然就与我所受的教育产生了诡异的“孪生”效应。不过,令人啼笑皆非的是,小马的这篇感情饱满、“活人感”很强的文章,竟然还是被Pangram网站判定为100%由AI生成。你写的挺好,逻辑也扎实,就是……由于历史原因,一些非英语母语者的写作,本就是现有AI模型的“教材”,而现在他们却成了AI普及后的“受害者”

2025-12-20 16:01:35 54

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除