大模型玩《宝可梦》达人类水平!网友喊话世界冠军:是时候一较高下了

西风 发自 凹非寺
量子位 | 公众号 QbitAI

基于大模型的Agent会玩宝可梦了,人类水平的那种!

名为PokéLLMon,现在它正在天梯对战中与人类玩家一较高下:

2e1463d84228a5b9251892d25fac1235.gif

PokéLLMon能灵活调整策略,一旦发现攻击无效,立刻改变行动:

e07002d8f81551080c532adfa8bfb30a.gif

PokéLLMon还会运用人类式的消耗战术,频繁给对方宝可梦下毒,并一边恢复自身HP。

9d42cd8916bfc069c3bff1085f407392.gif

不过面对强敌,PokéLLMon也会“慌乱”逃避战斗,连续切换宝可梦:

c8d25e6c7dc606de3c7c10b504cc3517.gif

最终对战结果是,PokéLLMon在随机天梯赛中取得49%的胜率与专业玩家的邀请赛中取得56%的胜率,游戏战略和决策水平接近人类。

网友看到PokéLLMon的表现也很意外,直呼:

小心被任天堂封禁,这话是认真的。

cadc9bf018380fb0f9d16a86dc23f53e.png

甚至有网友喊话宝可梦大满贯选手、世锦赛冠军Wolfey Glick,来和这个AI一较高下:

ac200eec3a7c8b946bf3c4693570fbc0.png

这究竟是如何做到的?

PokéLLMon大战人类

PokéLLMon由佐治亚理工学院研究团队提出:

9799b5ec5b40b4314f84be142d53c0ab.png

具体来说,他们提出了三个关键策略。

98b50fab71e8b1906fd6127729c551ab.png

一是上下文强化学习(In-Context Reinforcement Learning)。

利用从对战中即时获得的文字反馈作为一种新的“奖励”输入,不需要训练就可以在线迭代完善和调整PokéLLMon的决策生成策略。

其中反馈内容包括:回合HP变化、攻击效果、速度优先级、招式额外效果等。

比如PokéLLMon反复使用相同的攻击招式,但由于对方宝可梦具有“干燥皮肤”的能力,对其没有任何效果。

34258d2ace570270a22ddb891cb9bbdf.gif

在第三回合中对战中,通过即时上下文强化学习,PokéLLMon随后选择更换宝可梦。

8fc8b56d237d1628d9977659707c539c.png

二是知识增强生成(Knowledge-Augmented Generation)。

通过检索外部知识源作为额外输入,融入到状态描述中。比如检索类型关系、招式数据,模拟人类查询宝可梦图鉴,来减少未知知识导致的“幻觉”问题。

由此一来,PokéLLMon可以准确理解并应用招式效果。

比如面对犀牛进化形态的地面攻击,PokéLLMon未选择更换宝可梦,而是施展“电磁飘浮”,该技能在五回合内成功抵御地面攻击,使犀牛的“地震”技能无效。

d21d5a4d0b730c95107b53b832836645.png

三是一致性动作生成(Consistent Action Generation)。

研究人员发现,当PokéLLMon面对强大对手时,思维链(CoT)的推理方式会导致它因“恐慌”而频繁更换道具或宝可梦。

2736ee4ac3470e96a0850187292e2484.png
PokéLLMon害怕,不断切换宝可梦

而通过一致性动作生成,可以独立多次生成行动,投票出最一致的,从而缓解“恐慌”。

值得一提的是,研究人员所用的模型自主和人类作战的宝可梦对战环境,基于Pokemon Showdown和poke-env实现,目前已开源

c2360b99122c6bf25638c06a67495a99.png

为了测试PokéLLMon的对战能力,研究人员用它分别与随机天梯赛玩家和一名拥有15年经验的专业玩家对战。

结果,PokéLLMon与天梯随机玩家的胜率为48.57%,与专业玩家的邀请对战胜率为56%。

60b31a974e1dbe72bb412c0805cb3c6a.png

总的来说,PokéLLMon的优势在于:能准确选择有效招式,统一使用一个宝可梦击倒全部对手;展现出类人的消耗战略,使对手中毒后再拖延回血。

不过研究人员也指出了PokéLLMon的不足之处,面对玩家的消耗战略(拖延回血)很难应对:

e9b184b7a59212e5c9337eb6cb33e784.gif

容易被玩家的迷惑战术误导(迅速切换宝可梦,巧妙使PokéLLMon浪费强化攻击机会):

2aa2c537f38fa3a8b4d6c3e9e76ac897.gif

团队简介

三位作者均为华人学者。

e5c56f84c2680a412d4f52e574c9f8a1.png

论文一作胡思昊,现为佐治亚理工学院计算机科学博士生,本科毕业于浙江大学,曾在新加坡国立大学担任研究助理。

研究兴趣包括用于区块链安全和推荐系统的数据挖掘算法及系统。

28616f3b7af22eb0ab31b39eb26db473.png

作者Tiansheng Huang,同为佐治亚理工学院计算机科学博士生,华南理工大学校友。

研究兴趣包括分布式机器学习、并行与分布式计算、优化算法以及机器学习安全性。

6b259ec0dc62f681bfa4fb1207faabaa.png

导师刘玲,现为佐治亚理工学院计算机系教授。1982年毕业于中国人民大学,1993年于荷兰蒂尔堡大学获博士学位。

刘教授主导分布式数据密集系统实验室(DiSL)的研究工作,专注于大数据系统及其分析的多个方面,如性能、安全和隐私等。

同时她也是IEEE Fellow,2012年获得IEEE计算机学会技术成就奖,还曾担任多个IEEE和ACM大会主席。

参考链接:
[1]https://twitter.com/_akhaliq/status/1754337188014100876
[2]https://poke-llm-on.github.io/

—  —

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值