Codeforces Round #734 (Div. 3)

E. Fixed Points

题目链接

看完题解挺简单的一道dp题目
题意:给你一个数组,每次可以删除一个数,让你求出删数的个数最少的次数,使得a[i]==i的个数大于等于k。

题解:设dp[i][j]为前i个数保留j个数,然后如果第i数保留的话那么就得a[i]==j才能使得dp[i][j]更新(dp[i][j]=max(dp[i-1][j-1]+1,dp[i][j]),如果第
i个数不保留的话,那么就是dp[i][j]=max(dp[i][j],max(dp[i-1][j-1],dp[i-1][j]),至于为什么有dp[i-1][j-1],那就得看最后一个样例了,仔细理解一下就知道了。
#include <algorithm>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <math.h>
#include <queue>
#include <set>
#include <stack>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <unordered_map>
#include <vector>
#define ll long long int
#define ms(a, b) memset(a, b, sizeof(a))
#define lowbit(x) x & -x
#define fi first
#define se second
#define ull unsigned long long
#define lson (rt << 1)
#define rson (rt << 1 | 1)
#define endl "\n"
#define bug cout << "----acac----" << endl;
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
using namespace std;
const int maxn = 1e6 + 10;
const int maxm = 2e3 + 50;
const double eps = 1e-8;
const ll inf = 0x3f3f3f3f;
const ll lnf = 0x3f3f3f3f3f3f3f3f;
const double pi = acos(-1);
const ll mod = 1e9 + 7;

int n, k;
int dp[maxm][maxm];
int a[maxm];

int main()
{
    IOS;
    int T;
    cin >> T;
    while (T--)
    {
        cin >> n >> k;
        bool flage = true;
        for (int i = 1; i <= n; i++)
        {
            cin >> a[i];
            if(i!=a[i])
            {
                flage = false;
            }
        }
        if(flage)
        {
            cout << "0" << endl;
            continue;
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                dp[i][j] = 0;
            }
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= i; j++)
            {
                dp[i][j] = max(dp[i][j], max(dp[i - 1][j],dp[i-1][j-1]));
               // cout << dp[i][j] << " " << i << " " << j << endl;
                if(a[i]==j)
                {
                    dp[i][j] = max(dp[i - 1][j - 1] + 1, dp[i][j]);
                    //cout << i << " " << j <<" "<<dp[i-1][j-1] <<endl;
                }
            }
        }
        int ans = inf;
        for (int i = 1; i <= n;i++)
        {
            if(dp[n][i]>=k)
            {
                ans = min(ans, n - i);
            }
        }
        if(ans==inf)
        {
            cout << "-1" << endl;
        }
        else
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值