Python手动实现kmeans聚类和调用sklearn实现

1. 算法步骤

  • 随机选取k个样本点充当k个簇的中心点;
  • 计算所有样本点与各个簇中心之间的距离,然后把样本点划入最近的簇中;
  • 根据簇中已有的样本点,重新计算簇中心;
  • 重复步骤2和3,直到簇中心不再改变或改变很小。

2. 手动Python实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
 
n_data = 400
n_cluster = 4
# generate training data
X, y = make_blobs(n_samples=n_data, centers=n_cluster, cluster_std=0.60, random_state=0)
 
# generate centers of clusters
centers = np.random.rand(4, 2)*5
 
EPOCH = 10
tol = 1e-5
for epoch in range(EPOCH):
    labels = np.zeros(n_data, dtype=np.int)
 
    # 计算每个点到簇中心的距离并分配label
    for i in range(n_data):
        distance = np.sum(np.square(X[i]-centers), axis=1)
        label = np.argmin(distance)
        labels[i] = label
 
    # 重新计算簇中心
    for i in range(n_cluster):
        indices = np.where(labels == i)[0]       # 找出第i簇的样本点的下标
        points = X[indices]
        centers[i, :] = np.mean(points, axis=0)  # 更新第i簇的簇中心
 
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis')
plt.show()

运行结果:(注:当簇中心初始化不好时,可能计算会有点错误)
在这里插入图片描述
3. 调用sklearn实现kmeans

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets.samples_generator import make_blobs
 
# Generate some data
X, y = make_blobs(n_samples=400, centers=4, cluster_std=0.60, random_state=0)
 
# kmeans clustering
kmeans = KMeans(4, random_state=0)
kmeans.fit(X)   # 训练模型
labels = kmeans.predict(X)   # 预测分类
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis')
plt.show()

运行结果:
在这里插入图片描述

本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值