python列表教程:多个数列合并,合并后取值的方法

有时候需要从一个excel或者多个excel读取多列数据,然后传到后面的步骤内去执行操作

这里就涉及到把数据合并再分割的问题,比如下图excel数据,取出两列手机号和余额
在这里插入图片描述
思路,先从目标excel内逐列读出数据,创建数列

wb = xlrd.open_workbook(path+'\\2021.xlsx')# 打开Excel文件
data = wb.sheet_by_name('sheet1')#通过excel表格名称(rank)获取工作表
data_1=data.col_values(0)#获取第一列数据(数组)#查询号码
data_2=data.col_values(1)#获取第二列数据(数组)#上级
data_3=data.col_values(2)#获取第三列数据(数组)#余额
list1=[]
list2=[]
list3=[]

将读取出来的数据写入到数列中

for i in data_1[1:10]:
    list1.append(i)
for h in data_2[1:10]:
    list2.append(h)
for j in data_3[1:10]:
    list3.append(j)

再合并数列

name_tulpe = list(zip(list1,list2,list3))

按照上面的处理方式,用一个较简单的例子来演示,包含取出数据

'''
学习中遇到问题没人解答?小编创建了一个Python学习交流QQ群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
list_1 = [1,2,3,4,5]
list_2 = [10,11,12,13,14]

#合并数列
name_tulpe = list(zip(list_1,list_2))

#合并后的数列
print(name_tulpe)

#取第一组
print(name_tulpe[0])

#取第一组的第一个
print(name_tulpe[0][0])

打印结果

[(1, 10), (2, 11), (3, 12), (4, 13), (5, 14)]
(1, 10)
1
### 十大常见排序算法及其Python实现 #### 1. 冒泡排序 (Bubble Sort) 冒泡排序通过重复遍历要排序的列表,依次比较相邻元素交换顺序不对的元素。 ```python def bubble_sort(arr): n = len(arr) for i in range(n): for j in range(0, n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return arr ``` #### 2. 插入排序 (Insertion Sort) 插入排序构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置插入。 ```python def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i-1 while j >= 0 and key < arr[j]: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key return arr ``` #### 3. 选择排序 (Selection Sort) 每次从未排序部分选出最小(最大)的一个元素,放到已排序序列的末尾[^1]. ```python def selection_sort(arr): for i in range(len(arr)): min_idx = i for j in range(i+1, len(arr)): if arr[min_idx] > arr[j]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] return arr ``` #### 4. 归排序 (Merge Sort) 采用分治法策略,将数组分成两半分别排序再合并两个已经排序好的子数组得到完整的排序数列[^2]. ```python def merge_sort(arr): if len(arr) <= 1: return arr mid = len(arr)//2 left_half = merge_sort(arr[:mid]) right_half = merge_sort(arr[mid:]) return merge(left_half, right_half) def merge(left, right): sorted_array = [] i = j = 0 while i < len(left) and j < len(right): if left[i] < right[j]: sorted_array.append(left[i]) i += 1 else: sorted_array.append(right[j]) j += 1 sorted_array.extend(left[i:]) sorted_array.extend(right[j:]) return sorted_array ``` #### 5. 快速排序 (Quick Sort) 快速排序也是一种基于分治思想的方法,它选取一个基准值来划分待排序的数据集为较小和较大的两部分[^3]. ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` #### 6. 堆排序 (Heap Sort) 堆排序利用二叉树结构特性来进行排序操作。首先建立最大/最小堆,接着不断取出根节点作为当前的最大/最小值,调整剩余结点重新形成新的堆直到完成整个排序过程[^4]. ```python import heapq as hq def heap_sort(arr): h = [] for value in arr: hq.heappush(h, value) return [hq.heappop(h) for _ in range(len(h))] ``` #### 7. 计数排序 (Counting Sort) 计数排序适用于整数值范围有限的情况。创建额外空间存储各个可能取值的数量统计信息;最后按照这些数量重建原始输入中的排列关系即可获得最终结果[^5]. ```python def counting_sort(arr): max_val = max(arr)+1 count_arr = [0]*max_val for num in arr: count_arr[num]+=1 pos=0 for idx,val in enumerate(count_arr): for _ in range(val): arr[pos]=idx pos+=1 return arr ``` #### 8. 桶排序 (Bucket Sort) 桶排序假设输入服从均匀分布,则可以将区间划分为若干个固定大小的小段即“桶”,之后对每个桶内独立执行其他简单排序方法如插入排序等处理后再拼接起来构成整体输出[^6]. ```python from math import floor def bucket_sort(arr): buckets_num = round(max(arr)) buckets = [[]for _ in range(buckets_num)] for val in arr: index_buck = int(floor(val*buckets_num)) buckets[index_buck].append(val) result =[] for buck in buckets: insertionsort(buck)# 使用之前定义过的insertion sort函数 result.extend(buck) return result ``` #### 9. 基数排序 (Radix Sort) 基数排序针对多位数字进行逐位比较排序的一种线性时间复杂度O(d*(n+b)) 的稳定排序方式,其中d表示最高有效位数,n代表记录总数,b则指定了每轮分配使用的桶数目通常设为R=10对应十进制情况下的每一位上的不同可能性[^7]. ```python def radix_sort(nums): RADIX = 10 placement = 1 max_digit = max(nums) while placement <= max_digit: # declare and initialize empty list for each digit buckets = [list() for _ in range(RADIX)] # divide into different buckets based on current place value for i in nums: tmp = int((i / placement) % RADIX) buckets[tmp].append(i) # collect the numbers from all of the buckets a = 0 for b in range(RADIX): buck = buckets[b] for i in buck: nums[a] = i a += 1 # move to next significant position by multiplying with base(radix here is 10) placement *= RADIX return nums ``` #### 10.希尔排序 (Shell Sort) 希尔排序是对直接插入排序进行了改进优化后的版本之一,其核心在于先按一定间隔gap分割成多个子表各自做直接插入排序,随着增量逐渐减小直至变为1时就变成了普通的插入排序从而达到全局有序状态[^8]. ```python def shell_sort(arr): gap = len(arr) >> 1 while gap > 0: for i in range(gap,len(arr)): temp = arr[i] j=i-gap while j>=0 and arr[j]>temp : arr[j+gap]=arr[j] j-=gap arr[j+gap]=temp gap >>= 1 return
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值