分布式ID生成策略,我和面试官掰扯了一个小时,spring集成mybatis原理面试题

本文详细介绍了雪花算法的原理,包括64位ID的划分,如时间戳、数据中心ID、机器ID和序列号。还讨论了时间回拨可能导致的重复ID问题,并提供了雪花算法的Java实现。在面试过程中,作者展示了良好的技术基础和问题解决能力。
摘要由CSDN通过智能技术生成

} catch (Exception e) {  // 若是redis宕机就采用uuid的方式

int first = new Random(10).nextInt(8) + 1;

int randNo=UUID.randomUUID().toString().hashCode();

if (randNo < 0) {

randNo=-randNo;

}

return Long.va 《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》开源 lueOf(first + String.format(“d”, randNo));

}

}

我把电脑移回给面试官,他很快的扫了一下我的代码,说了一句。

面试官:小伙子,不写注释哦,这个习惯不好哦。

我:哦哦,谢谢提醒,不好意思,下次我会注意的。

雪花算法

我:第六种方式是「雪花算法」,也是现在市面上比较流行的生成分布式ID的方法。

说着说着,我知道画图又是必不可少的了,于是在桌子上有画了起来,面试官好奇的看看我,知道了我在干啥,又耐心的等了等。

我:他是采用64bit作为ID生成类型,并且将64bit划分为,如下图的几段。

我顺手把我画的图递给他看了看,接着对着这个图进行解释。

3.png

我:第一位作为标识位,因为Java中long类型的时代符号的,因为ID位正数,所以第一位位0。

我:接着的41bit是时间戳,毫秒级位单位,注意这里的时间戳并不是指当前时间的时间戳,而是值之间差(「当前时间-开始时间」)。

我:这里的开始时间一般是指ID生成器的开始时间,是由我们程序自己指定的。

我:接着后面的10bit:包括5位的「数据中心标识ID(datacenterId)和5位的机器标识ID(workerId)」,可以最多标识1024个节点(1<<10=1024)。

我:最的12位是序列号,12位的计数顺序支持每个节点每毫秒差生4096序列号(1<<12=4096)。

我:雪花算法使用数据中心ID和机器ID作为标识,不会产生ID的重复,并且是在本地生成,不会消耗网络,效率高,有数据显示,每秒能生成26万个ID。

我:但是雪花算法也是又自己的缺点,因为雪花算法的计算依赖于时间,若是系统时间回拨,就会产生重复ID的情况。

面试官:那对于时间回拨产生重复ID的情况,你有什么比较好的解决方案吗?

我:在雪花算法的实现中,若是其前置的时间等于当前的时间,就抛出异常,也可以关闭掉时间回拨。

我:对于回拨时间比较短的,可以等待回拨时间过后再生成ID。

面试官:你可以帮我敲一个雪花算法吗?我这键盘给你。

我:……

我:好的。

时间流逝中…

过了几分钟时间,也总算是把雪花算法给敲出来了,真正要老命,面个试怎么就那么难呢?

/**

* 雪花算法

* @author:黎杜

*/

public class SnowflakeIdWorker {

/** 开始时间截 */

private final long twepoch = 1530051700000L;

/** 机器id的位数 */

private final long workerIdBits = 5L;

/** 数据标识id的位数 */

private final long datacenterIdBits = 5L;

/** 最大的机器id,结果是31 */

private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

/** 最大的数据标识id,结果是31 */

private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

/** 序列的位数 */

private final long sequenceBits = 12L;

/** 机器ID向左移12位 */

private final long workerIdShift = sequenceBits;

/** 数据标识id向左移17位 */

private final long datacenterIdShift = sequenceBits + workerIdBits;

/** 时间截向左移22位*/

private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

/** 生成序列的掩码 */

private final long sequenceMask = -1L ^ (-1L << sequenceBits);

/** 工作机器ID(0~31) */

private long workerId;

/** 数据中心ID(0~31) */

private long datacenterId;

/** 毫秒内序列(0~4095) */

private long sequence = 0L;

/** 上次生成ID的时间截 */

private long lastTimestamp = -1L;

/**

* 构造函数

* @param workerId 工作ID (0~31)

* @param datacenterId 数据中心ID (0~31)

*/

public SnowflakeIdWorker(long workerId, long datacenterId) {

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException(String.format(“worker Id can’t be greater than %d or less than 0”, maxWorkerId));

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

throw new IllegalArgumentException(String.format(“datacenter Id can’t be greater than %d or less than 0”, maxDatacenterId));

}

this.workerId = workerId;

this.datacenterId = datacenterId;

}

/**

* 获得下一个ID (该方法是线程安全的)

* @return SnowflakeId

*/

public synchronized long nextId() {

long timestamp = getCurrentTime();

//如果当前时间小于上一次生成的时间戳,说明系统时钟回退过就抛出异常

if (timestamp < lastTimestamp) {

throw new BusinessionException(“回拨的时间为:”+lastTimestamp - timestamp);

}

//如果是同一时间生成的,则进行毫秒内序列

if (lastTimestamp == timestamp) {

sequence = (sequence + 1) & sequenceMask;

//毫秒内序列溢出

if (sequence == 0) {

//获得新的时间戳

timestamp = tilNextMillis(lastTimestamp);

}

} else {  //时间戳改变,毫秒内序列重置

sequence = 0L;

}

//上次生成ID的时间截

lastTimestamp = timestamp;

//移位并通过或运算拼到一起组成64位的ID

return ((timestamp - twepoch) << timestampLeftShift) // 计算时间戳

| (datacenterId << datacenterIdShift) // 计算数据中心

| (workerId << workerIdShift) // 计算机器ID

| sequence; // 序列号

}

/**

*获得新的时间戳

* @param lastTimestamp 上次生成ID的时间截

* @return 当前时间戳

*/

protected long tilNextMillis(long lastTimestamp) {

long timestamp = getCurrentTime();

// 若是当前时间等于上一次的1时间就一直阻塞,知道获取到最新的时间(回拨后的时间)

while (timestamp <= lastTimestamp) {

timestamp = getCurrentTime();

}

return timestamp;

}

/**

* 获取当前时间

* @return 当前时间(毫秒)

*/

prote Java开源项目【ali1024.coding.net/public/P7/Java/git】 cted long getCurrentTime() {

return System.currentTimeMillis();

}

为了给面试官留下个好印象,这下也写上了注解,免得他又说我,敲完我又把电脑移回给他,他快速的看了看,点了点头,嘴角露出思思的笑意。

面试官:嗯,你的底子还算比价扎实,面试之前早有准备吧,看了很多的面试资料。

我心想怎么是面试之前准备呢?我是一直再准备,从工作到现在都在总结自己的知识点,形成自己的知识体系,为了迎合他,也只能说是。

我:嗯嗯,是的,准备了很久,算是比较充分。

面试官:嗯,最后的两种算法,你还深入了解吗?

Leaf和UidGenerator

分享

这次面试我也做了一些总结,确实还有很多要学的东西。相关面试题也做了整理,可以分享给大家,了解一下面试真题,想进大厂的或者想跳槽的小伙伴不妨好好利用时间来学习。学习的脚步一定不能停止!

薪酬缩水,“裸辞”奋战25天三面美团,交叉面却被吊打,我太难了

Spring Cloud实战

薪酬缩水,“裸辞”奋战25天三面美团,交叉面却被吊打,我太难了

Spring Boot实战

薪酬缩水,“裸辞”奋战25天三面美团,交叉面却被吊打,我太难了

面试题整理(性能优化+微服务+并发编程+开源框架+分布式)
合他,也只能说是。

我:嗯嗯,是的,准备了很久,算是比较充分。

面试官:嗯,最后的两种算法,你还深入了解吗?

Leaf和UidGenerator

分享

这次面试我也做了一些总结,确实还有很多要学的东西。相关面试题也做了整理,可以分享给大家,了解一下面试真题,想进大厂的或者想跳槽的小伙伴不妨好好利用时间来学习。学习的脚步一定不能停止!

[外链图片转存中…(img-dNjnfAP3-1650622270135)]

Spring Cloud实战

[外链图片转存中…(img-jpD6uM3D-1650622270136)]

Spring Boot实战

[外链图片转存中…(img-wiX0Yb35-1650622270136)]

面试题整理(性能优化+微服务+并发编程+开源框架+分布式)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值