自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 CV图像分类数据集处理

图像分类数据集处理数据集保存格式1划分数据集数据保存格式2划分数据集数据增强数据集保存格式1trainclass10.jpg1.jpgclass20.jpg1.jpgtest0.jpg1.jpg图片按类别分别保存在不同文件夹下。划分数据集import codecsimport osimport randomimport shutilfrom PIL import Imagetrain_ratio = 4 / 5all_file_dir =

2021-07-28 18:32:33 372

原创 HTML 渲染组件出错,这个问题可以通过安装某个缺失组件来解决。您是否想要了解详细信息?

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2021-02-16 18:49:43 1323 2

原创 卷积神经网络基本概念

百度飞桨架构师手把手带你零基础实践深度学习——打卡计划(PaddlePaddle)第二周计算机视觉卷积神经网络本周的主要内容是卷积神经网络——目前计算机视觉中使用最普遍的模型结构。计算机视觉识别图片中的物体,对人类来讲是十分简单的事情,但是,对于计算机来说就没那么简单了。由于拍摄角度等其他一系列不确定因素,人想直接对计算机编程来识别图片中的物体是非常困难的。可是我们可以将识别图片这个大任务分为几个小任务。(a) Image Classification: 图像分类,用于识别图像中物体的类别(如:

2020-08-19 15:04:55 459

原创 Python 一般的print()格式化输出

@[TOC](Python print()格式化输出)%s 字符串 (采用str()的显示)%r 字符串 (采用repr()的显示)%c 单个字符%b 二进制整数%d 十进制整数%i 十进制整数%o 八进制整数%x 十六进制整数%e 指数 (基底写为e)%E 指数 (基底写为E)%f 浮点数%F 浮点数,与上相同%g 指数(e)_x0010_或浮点数 (根据显示长度)%G 指数(E)或浮点数 (根

2020-08-15 21:22:41 779

原创 模型过拟合原因及解决办法

模型过拟合原因及解决办法过拟合现象导致过拟合原因解决办法过拟合现象对于样本量有限、但需要使用强大模型的复杂任务,模型很容易出现过拟合的表现,即在训练集上的损失小,在验证集或测试集上的损失较大反之,如果模型在训练集和测试集上均损失较大,则称为欠拟合。过拟合表示模型过于敏感,学习到了训练数据中的一些误差,而这些误差并不是真实的泛化规律(可推广到测试集上的规律)。欠拟合表示模型还不够强大,还没有很好的拟合已知的训练样本,更别提测试样本了。因为欠拟合情况容易观察和解决,只要训练loss不够好,就不断使用更强

2020-08-15 17:05:35 7013

原创 Python format() 格式化输出从基本到进阶

format()格式化输出基本用法不带编号,即“{}”带数字编号,可以调换顺序,即“{1}”,“{2}”带关键字,即“{a}”,“{tom}”>>> print('{} {}'.format('hello','world')) # 不带字段hello world>>> print('{0} {1}'.format('hello','world')) # 带数字编hello world>>> print('{0} {1} {0}'

2020-08-13 10:02:24 266

转载 机器学习和深度学习的概念,发展历程和相关概念

@[TOC]百度飞浆架构师手把手带你零基础实践深度学习——打卡计划(第一周)机器学习和深度学习综述这一章初步了解机器学习和深度学习的概念,发展历程和相关概念人工智能、机器学习、深度学习的关系人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的。三者的关系如图所示,即:人工智能 > 机器学习 > 深度学习。机器学习机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。机器学习的实现机器学习的实现可以分成两步:

2020-08-12 11:34:17 830

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除