
SSA-RF和RF神经网络多元回归预测(Matlab)
为了解决这个问题,我们提出了一种新的随机森林多元回归预测模型,即基于奇异谱分析(Singular Spectrum Analysis, SSA)的随机森林多元回归预测模型(SSA-RF)。实验结果表明,SSA-RF模型的预测效果显著优于传统的随机森林模型,同时也比其他传统的时间序列预测方法具有更好的预测精度和鲁棒性。因此,通过对分解后的各成分进行随机森林回归预测,可以提高预测精度。最后,SSA-RF模型采用了一种基于遗传算法的优化方法,可以自动选择最优的树木大小和叶子节点数,从而提高预测精度。












