算法分析和数据结构
文章平均质量分 50
qf_study
闭关学习!
展开
-
算法的几项要点
算法的几项要点: 算法的每一个步骤都必须没有歧义,不能有半点含糊 必须认真确定算法所处理的输入的值域 同一算法可以用几种不同的形式来描述 同一问题,可能存在几种不同的算法 针对同一问题的算法可能会基于完全不同的解题思路,而且解题速度也会有显著不同原创 2008-02-26 19:38:00 · 460 阅读 · 0 评论 -
埃拉托色尼筛算法
功能:用来产生一个不大于给定整数n的连续质数序列算法 Sieve(n)//实现“埃拉托色尼的筛子”//输入:一个正整数≥2//输出:包含所有小于等于n的质数的数组Lfor p←2 to n do A[p]←p //A[p]表示数组 for p←2 to do // 表示向下取整函数,即求舍去小数部分后的整数值 if A[p]≠0原创 2008-02-26 22:08:00 · 713 阅读 · 0 评论 -
求最大公约数算法(3中方法)
最大公约数定义:两个不全为0的非负整数m和n的最大公约数记为gcd(m,n),代表能够整除(即余数为0)m和n的最大正整数。 一、欧几里得算法第一步:如果n=0,返回m的值作为结果,同时过程结束;否则进入第二步第二步:m除以n,将余数赋给r第三步:将n的值赋给m,将r的值赋给n,返回第一步算法 Euclid(m,n) //使用欧几里德算法计算g原创 2008-02-26 20:49:00 · 4418 阅读 · 1 评论 -
七桥问题
七桥问题Seven Bridges Problem 著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔转载 2008-03-01 12:49:00 · 3227 阅读 · 0 评论 -
Wilson定理(一个判断素数的简单方法)
Wilson定理;对于一个任意整数n>1,当且仅当n是一个素数时,(n-1)!+1能够被n整除。 算法如下: function Wilson(n) {//当且仅当n>1且n是素数时,返回true if((n-1)!+1) mode n==0 then return true else return false }原创 2008-03-16 18:57:00 · 2312 阅读 · 0 评论 -
MD5原理
v/:* {behavior:url(#default#VML);} o/:* {behavior:url(#default#VML);} w/:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 7.8 磅 0 2 false false false原创 2008-07-09 21:48:00 · 4786 阅读 · 0 评论