一、LRU 算法描述
LRU 算法实际上是让你设计数据结构:首先要接收一个 capacity 参数作为缓存的最大容量,然后实现两个 API,一个是 put(key, val) 方法存入键值对,另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。
注意哦,get 和 put 方法必须都是 O(1)O(1) 的时间复杂度,我们举个具体例子来看看 LRU 算法怎么工作。
/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)
cache.put(1, 1);
// cache = [(1, 1)]
cache.put(2, 2);
// cache = [(2, 2), (1, 1)]
cache.get(1); // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1
cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头
cache.get(2); // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据
cache.put(1, 4);
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头
作者:labuladong
链接:https://leetcode-cn.com/problems/two-sum/solution/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
二、LRU 算法设计
分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1)O(1),我们可以总结出 cache 这个数据结构必要的条件:查找快,插入快,删除快,有顺序之分。
因为显然 cache 必须有顺序之分,以区分最近使用的和久未使用的数据;而且我们要在 cache 中查找键是否已存在;如果容量满了要删除最后一个数据;每次访问还要把数据插入到队头。
那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表。
LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:
速删除、添加节点。回想刚才的例子,这种数据结构是不是完美解决了 LRU 缓存的需求?
也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存键值对呢,只存值不就行了?
想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~
三 算法实现
package leetcode;
import java.util.HashMap;
class Node {
public int key, val;
public Node pre, next;
Node(int key, int val) {
this.key = key;
this.val = val;
}
}
class DoubleList {
private Node tail, head;// 头尾节点
private int size;// 链表元素数
DoubleList() {
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.pre = head;
size = 0;
}
// 在链表头部添加节点x
public void addFirst(Node x) {
x.next = head.next;
x.pre = head;
head.next.pre = x;
head.next = x;
size++;
}
// 删除链表中x节点
public void romve(Node x) {
x.next.pre = x.pre;
x.pre.next = x.next;
size--;
}
// 删除链表中最后一个节点,并返回该节点
public Node romoveLast() {
if (tail.pre == head)
return null;
Node last = tail.pre;
romve(last);
return last;
}
// 返回链表长度
public int size() {
return size;
}
}
public class LRUCache {
private HashMap<Integer, Node> map;
private DoubleList cache;
private int capacity;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>();
cache = new DoubleList();
}
public int get(int key) {
if (!map.containsKey(key))
return -1;
int val = map.get(key).val;
// 利用put方法把数据提到前面
put(key, val);
return val;
}
public void put(int key, int value) {
// 把新节点构造出来
Node x = new Node(key, value);
if (map.containsKey(key)) {
// 删除旧的节点,新的节点插入到头部
cache.romve(map.get(key));
cache.addFirst(x);
// 更新map中对应的数据
map.put(key, x);
} else {
if (capacity == cache.size()) {
// 删除表中的最后一个元素
Node last = cache.romoveLast();
map.remove(last.key);
}
// 直接插到头部
cache.addFirst(x);
map.put(key, x);
}
}
public static void main(String[] args) {
}
}
参考链接:https://leetcode-cn.com/problems/lru-cache/solution/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/