【健康餐】

153 篇文章

已下架不支持订阅

题目解析

本题是“完全背包 - 装满背包的方案数问题”,其定义如下:

给定一个承重为W的背包,以及若干种物品,第 i 种物品的重量是w[i],每种物品无限个,问装满背包的方案数是多少?

关于“完全背包 - 装满背包的方案数问题”的状态转移方程为:

dp[j] += dp[j - w[i]]

dp[j] 的含义是 装满承重为 j 的背包的方案数。

状态转移方程意思是:如果装满承重为 j - w[i] 的背包的方案数为 dp[j - w[i]],那么在其每个具体方案中追加一个w[i]重量的物品,则每个具体方案就变成了装满承重 j 的背包的方案。

因此 dp[j] 可以复用 dp[j - w[i]] 的所有方案数。(复用的意思是+=)

更多关于“完全背包 - 装满背包的方案数问题”细节,可以参考下:

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值