在处理分类问题时,数据集可能会存在类不平衡问题,如在某冰箱厂家生产的10000台冰箱中,有9900台为合格产品,而剩余的100台为不合格产品。在这种情境下,即使采用将全部样本分类为正类的分类器也可以得到99%的准确率,但看似很高的准确率却并没有任何意义,因为在实际应用中需要重点关注的往往正是那些总量只占1%的错误分类样本。这就使得分类器准确性的评估变得没有意义。
通过阅读《数据挖掘导论》第五章的相应内容,下面介绍几种处理类不平衡问题的方法。这几种方法可以分为三个方面的处理:(1)各类别各自的评价标准;(2)正负类别之间的代价处理;(3)数据集的采样处理。下面具体介绍。
1.各类别各自的评价标准
由于正负样本件数目相差过大,可以对各类样本内部进行分析来对分类器进行评估。下面介绍一些具体方法。
1.1 一些评价值
真正例(TP):分类器分类为正例的样本中原本为正样本的样本数。
真反例(TN):分类器分类为反例的样本中原本为反样本的样本数。
假正例(FP):分类器分类为正例的样本中原本为反样本的样本数。
假反例(FN):分类器分类为反例的样本中原本为正样本的样本数。
其中FP和FN都是被误分类的样本。
可以对分类器得到的上述值构造混淆矩阵。如下图
