题目描述
轩轩和凯凯正在玩一款叫《龙虎斗》的游戏,游戏的棋盘是一条线段,线段上有 n 个兵营(自左至右编号 1∼n),相邻编号的兵营之间相隔 1 厘米,即棋盘为长度为 n−1 厘米的线段。i 号兵营里有ci位工兵。 下面图 1 为 n=6 的示例:
轩轩在左侧,代表“龙”;凯凯在右侧,代表“虎”。 他们以 m 号兵营作为分界, 靠左的工兵属于龙势力,靠右的工兵属于虎势力,而第 m 号兵营中的工兵很纠结,他们不属于任何一方。
一个兵营的气势为:该兵营中的工兵数 × 该兵营到 m 号兵营的距离;参与游戏 一方的势力定义为:属于这一方所有兵营的气势之和。
下面图 2 为 n=6,m=4 的示例,其中红色为龙方,黄色为虎方:
游戏过程中,某一刻天降神兵,共有 s1 位工兵突然出现在了 p1 号兵营。作为轩轩和凯凯的朋友,你知道如果龙虎双方气势差距太悬殊,轩轩和凯凯就不愿意继续玩下去了。为了让游戏继续,你需要选择一个兵营 p2,并将你手里的 s2 位工兵全部派往 兵营 p2,使得双方气势差距尽可能小。
注意:你手中的工兵落在哪个兵营,就和该兵营中其他工兵有相同的势力归属(如果落在 m 号兵营,则不属于任何势力)。
输入格式
输入文件的第一行包含一个正整数n,代表兵营的数量。
接下来的一行包含 n 个正整数,相邻两数之间以一个空格分隔,第 i 个正整数代 表编号为 i 的兵营中起始时的工兵数量 ci。
接下来的一行包含四个正整数,相邻两数间以一个空格分隔,分别代表 p1,s1,s2。
输出格式
输出文件有一行,包含一个正整数,即 p2,表示你选择的兵营编号。如果存在多个编号同时满足最优,取最小的编号。
输入输出样例
输入 #1
6 2 3 2 3 2 3 4 6 5 2
输出 #1
2
输入 #2
6 1 1 1 1 1 16 5 4 1 1
输出 #2
1
#include <bits/stdc++.h>
using namespace std;
int n, m, p1, p2;
long long s1, s2, c[100002], total1, total2, maxn;
int main(){
// freopen("fight.in", "r", stdin);
// freopen("fight.ans", "w", stdout);
cin >> n;
for(int i=1; i<=n; i++){
cin >> c[i];
}
cin >> m >> p1 >> s1 >> s2;
//将s1个工兵放在p1兵营中
c[p1]+=s1;
//计算龙势力
for(int i=1; i<m; i++){
total1+=c[i]*(m-i);
}
//计算虎势力
for(int i=m+1; i<=n; i++){
total2+=c[i]*(i-m);
}
//记录龙虎势力之差
maxn=abs(total1-total2);
//p2先放在m处
p2=m;
//如果龙的气势强,则考虑落在虎那边
if(total1>total2){
for(int i=m+1; i<=n; i++){
if(abs(total2+s2*(i-m)-total1)<maxn){
maxn=abs(total2+s2*(i-m)-total1);
p2=i;
}
}
}
else if(total1<total2){//如果虎的气势强,则考虑落在龙那边
for(int i=1; i<m; i++){
if(abs(total1+s2*(m-i)-total2)<maxn){
maxn=abs(total1+s2*(m-i)-total2);
p2=i;
}
}
}
//输出p2位置,如果上面两个for循环均未改变p2的值,
//则p2放在m处最合适,前面已经初始化过。
cout << p2;
return 0;
}