图表辅助元素的定制(标题、图例、坐标轴名称、网格、刻度定制)

在数据可视化中,除了绘制数据曲线之外,还可以通过定制图表的辅助元素来提升图表的可读性和吸引力。这些辅助元素包括标题、图例、坐标轴名称、网格和刻度。下面是对这些图表辅助元素的定制的简要介绍:

首先建立一个包含正余弦图像的坐标系:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y1, y2 = np.sin(x), np.cos(x)
plt.plot(x,y1,x,y2)

plt.show()

图像展示如下:

为图表添加辅助元素:

为图表添加标题,图例和显示网格

1.设置字体中文黑体

# 设置中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

2.设置坐标轴名称

#设置坐标轴名称
ax.set_xlabel("x轴")
ax.set_ylabel("y轴")

3.设置x轴的刻度范围和刻度标签

#设置x轴的刻度范围和刻度标签
ax.set_xlim(x.min() * 1.5, x.max() * 1.5)
ax.set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], 
              [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$\pi/2$', r'$\pi$'])
完整代码如下:
import numpy as np
import matplotlib.pyplot as plt
 
# 0.设置中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
 
# 创建画布
fig = plt.figure()
# 在画布上添加绘图区域
ax = fig.add_subplot(111)
 
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y1, y2 = np.sin(x), np.cos(x)
ax.plot(x, y1, x, y2)

#设置x轴和y轴标签
ax.set_xlabel("x轴")
ax.set_ylabel("y轴")

#设置x轴的刻度范围和刻度标签
ax.set_xlim(x.min() * 1.5, x.max() * 1.5)
ax.set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], 
              [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$\pi/2$', r'$\pi$'])
plt.show()

 4.在图表内添加图例:

#添加图例
ax.legend(ax.plot(x, y1, x, y2), ['正弦', '余弦'], shadow=True, fancybox=True)

5.为图表添加标题


#添加标题
ax.set_title("正弦曲线和余弦曲线")

6.为图表添加网格

# 添加网格
ax.grid(True)

完整代码如下:

import numpy as np
import matplotlib.pyplot as plt

# 0.设置中文
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

# 创建画布
fig = plt.figure()

# 在画布上添加绘图区域
ax = fig.add_subplot(111)
x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
y1, y2 = np.sin(x), np.cos(x)
ax.plot(x, y1, x, y2)

# 设置x轴和y轴标签
ax.set_xlabel("x轴")
ax.set_ylabel("y轴")

# 添加网格
ax.grid(True)

# 设置x轴的刻度范围和刻度标签
ax.set_xlim(x.min() * 1.5, x.max() * 1.5)
ax.set_xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],
              [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$\pi/2$', r'$\pi$'])

# 添加标题
ax.set_title("正弦曲线和余弦曲线")

# 添加图例
ax.legend(ax.plot(x, y1, x, y2), ['正弦', '余弦'], shadow=True, fancybox=True)

plt.show()

效果展示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值