自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

你是怎么做到的?我为什么做不到

《风雨哈佛路》Don't close your eyes, rise again after you fall, you need to get out.

  • 博客(222)
  • 资源 (43)
  • 收藏
  • 关注

原创 项目实践14—全球证件智能识别系统(切换回SQLite数据库并基于Docker实现离线部署和日常管理)

全球证件智能识别系统离线部署方案采用Docker容器技术,将FastAPI后端服务、Python环境、系统依赖库和PostgreSQL数据库打包为单体容器镜像。通过Docker构建、导出、传输和导入流程实现离线交付,简化内网部署。方案包含详细的环境初始化、数据库配置和项目部署步骤,并开发了运维管理工具集,支持未知证件快速检索、数据批量导出和特征模型更新等功能。最终生成单一.tar镜像文件,实现"一次构建,随处运行"的部署目标。

2026-01-06 10:35:11 684

原创 项目实践13—全球证件智能识别系统(内网离线部署大模型并调用)

本文详细介绍了在完全断网的内网GPU服务器上部署Qwen3-VL-8B-Thinking多模态大模型的完整流程。服务器配置为4张NVIDIA Tesla T4显卡(64GB总显存),采用全容器化方案确保数据安全。主要内容包括:1)Ubuntu Server 24.04 LTS系统的离线安装与初始化;2)关键步骤如磁盘格式化、用户创建和SSH配置;3)非系统盘数据清理方法;4)基础离线依赖包的准备与安装。特别强调了在断网环境下通过移动存储介质传输安装包的技术要点,为政务、金融等高敏感场景提供安全可靠的大模型部

2025-12-22 16:01:33 895

原创 Ubuntu更改文件夹及子文件夹权限(拷贝、移动、删除)

摘要:本文介绍了一个快速修改文件权限的Linux命令。通过执行sudo chmod 777 * -R命令,可以递归地将当前目录下所有文件的权限设置为可读、可写、可执行(777权限)。该命令使用sudo获取管理员权限,-R参数实现递归操作,星号(*)表示作用于所有文件。但需注意这种宽松的权限设置可能存在安全隐患。

2025-12-20 18:29:27 95

原创 基于Windows Docker Desktop提取Ubuntu 24.04 Nvidia驱动编译所需的依赖包(gcc、build-essential、make等)

本文介绍了一种在物理隔离环境中高效部署依赖软件的标准化解决方案。针对Ubuntu Server 24.04系统,通过Docker Desktop容器技术模拟目标环境,利用apt包管理器自动解析并下载所有依赖项。关键步骤包括:创建本地存储目录、拉取匹配的基础镜像、启动容器并挂载工作区、使用apt-get download-only命令下载编译工具链和指定版本内核头文件。最后将下载的.deb文件拷贝至离线服务器,通过dpkg命令批量安装。该方法有效解决了传统手动下载方式效率低下和依赖遗漏问题,为高安全等级IT环

2025-12-19 23:15:13 810

原创 项目实践12—全球证件智能识别系统(建立样证上传通道)

本文介绍了"全球证件智能识别系统"中新增的"样证上传与反馈"功能开发。该功能通过建立人工反馈机制,使系统能够持续优化识别能力。后端采用PostgreSQL存储多光谱图像和业务元数据,基于FastAPI开发数据接收接口;客户端通过Qt对话框实现用户交互,包含动态表单验证和国别选择联动。系统设计强调数据溯源,预留设备序列号字段,为后续权限管理提供基础。这一功能实现了业务数据的闭环回流,为系统持续进化奠定基础。

2025-12-17 10:27:24 832

原创 项目实践11—全球证件智能识别系统(切换为PostgreSQL数据库)

本文介绍了将全球证件智能识别系统数据库从SQLite迁移到PostgreSQL的过程。PostgreSQL在生产环境中具有高并发支持、丰富数据类型和强大生态等优势。具体步骤包括:在Ubuntu上安装PostgreSQL服务并配置用户数据库;安装适配FastAPI的psycopg2驱动;修改database.py和Alembic配置文件以支持环境变量动态切换;深度改造数据模型,使用PostgreSQL原生ARRAY类型存储图像特征向量,替代原有的pickle序列化方式,提高数据处理效率和透明度。这些优化为系统

2025-12-16 16:53:07 587

原创 基于树莓派4与RaspAP搭建一台无线路由器

本文详细介绍了利用树莓派4和RaspAP定制镜像快速搭建无线AP的方法。针对国内网络环境下手动安装依赖困难的问题,推荐使用预集成的Custom OS镜像,通过Raspberry Pi Imager烧录后即可使用。文章包含硬件准备、镜像获取处理、烧录步骤、首次启动配置等完整流程,并提供了默认WiFi和管理后台的连接信息。该方案可快速将闲置树莓派转变为功能完备的无线路由器,支持Web界面管理、VPN配置等高级功能,是稳定高效的部署方案。

2025-12-07 15:40:15 758

原创 从零开始发表SCI论文—第1篇:安装Latex写作工具

摘要:本文详细介绍了Windows系统下LaTeX环境的搭建与Springer期刊模板的使用方法。首先推荐安装TeX Live发行版,建议下载ISO镜像文件进行完整安装,并确保路径不含中文字符。其次配置VS Code编辑器,安装LaTeX Workshop插件并设置自动化编译流程。最后以Springer Nature期刊模板为例,解析目录结构、修改文档类选项、调整参考文献格式,并演示编译过程。整套方案可实现保存即编译、交叉引用自动处理等功能,适用于学术论文写作与期刊投稿。

2025-11-30 23:01:14 623

原创 项目实践10—全球证件智能识别系统(逻辑和界面优化)

本文针对全球证件智能识别系统的交互逻辑和界面布局进行了优化改进。在交互方面,通过严格的状态管理策略,确保操作按钮仅在满足前置条件时激活,防止误操作导致的程序崩溃。具体实现包括:1)初始化禁用依赖数据的按钮;2)根据数据完整性动态更新按钮状态;3)在采集流程关键节点植入状态检查。 在界面布局方面,解决了QSplitter比例失调问题,通过设置尺寸策略和伸缩因子,强制保持左右区域4:1的固定比例,确保图像展示和识别结果区域的稳定性。这些优化显著提升了系统的健壮性和用户体验。

2025-11-27 13:48:51 914

原创 在Ubuntu系统中使用Nginx和花生壳部署并发布网站

本文详细介绍了在Ubuntu系统上使用Nginx部署静态网站并实现外网访问的完整流程。首先通过apt安装Nginx并配置防火墙,然后上传网站文件到/var/www/目录并设置权限。接着创建Nginx配置文件,设置服务器块、根目录和访问规则。最后利用花生壳内网穿透服务,通过端口映射将内网80端口映射到公网域名,实现外网访问。整个过程包含Nginx的安装配置、静态网站部署和花生壳设置等关键步骤,提供了一套完整的静态网站发布解决方案。

2025-11-10 17:11:45 873

原创 项目实践8—全球证件智能识别系统(样证库整理与检索算法微调训练)

本文针对现有国外证件识别系统中MobileNetV3特征提取模型在小样本场景下性能不足的问题,提出了基于度量学习的改进方案。首先分析了当前系统架构的局限性,指出通用预训练模型对证件细粒度特征捕捉不足的缺陷。进而提出采用孪生网络和三元组损失的度量学习方法,通过优化特征空间分布来提升模型区分能力。为支持该方案,详细设计了样证库命名规范的优化策略,引入语义化可扩展的命名格式,并提供了自动化迁移脚本实现文件名重构与关联JSON文件的同步更新。这一改进为后续模型微调奠定了数据基础,旨在显著提升证件匹配的准确性。

2025-11-07 16:26:46 1089

原创 项目实践7—全球证件智能识别系统(国内证照调用大模型进行OCR)

本文介绍了"证照智能识别系统"后端服务的关键功能升级,重点在原有紫外防伪检测基础上新增了基于多模态大模型的深度OCR功能。针对国内驾驶证/行驶证等全息防伪证件,创新性地采用白光+红外图像的复合输入策略,通过大模型的辩证识别能力实现高精度结构化信息提取。技术方案包含:1)更新防伪检测模块返回机器可读证件类型;2)设计专用提示词实现结构化OCR输出;3)根据用户选项条件触发深度OCR流程。系统在真伪鉴别基础上新增信息提取能力,形成更完善的证照处理矩阵。

2025-11-04 11:41:38 757

原创 项目实践6—全球证件智能识别系统(防伪特征识别)

摘要 本文介绍了在"证照智能识别系统"后端服务中新增基于紫外荧光图像的国内证件防伪特征识别功能。采用预训练的YOLOv11m目标检测模型,通过ultralytics库实现高效部署。主要包含: 开发紫外防伪验证模块(UVValidator类),封装模型加载、图像处理、特征检测等核心逻辑 制定多级业务规则进行真伪判别,包括证件版心识别、纤维特征分析等关键指标 对检测结果进行可视化处理,标注发现的所有防伪特征 与现有识别体系无缝集成,形成国内外证件分类处理的能力分层 系统通过该功能可自动回答&

2025-10-29 16:08:12 1108

原创 项目实践5—全球证件智能识别系统(优化前后端逻辑)

本文介绍了"证照智能识别系统"的两项关键功能升级。首先,在客户端界面新增了"启用版面识别"复选框,让用户自主选择是否调用耗时的大模型深度识别功能。通过修改Qt界面代码和网络请求逻辑,将用户选择状态传递给后端。其次,后端服务更新了Pydantic数据模型和API端点,实现根据客户端指令条件化执行大模型推理的能力。系统现在可在快速检索和深度识别模式间灵活切换,同时确保数据隐私和用户体验。

2025-10-27 14:52:49 848

原创 项目实践9—全球证件智能识别系统(通义千问Qwen3-VL-8B-Thinking图文多模态大模型本地部署)

本文介绍了在本地部署阿里巴巴Qwen团队研发的多模态大模型Qwen3-VL-8B-Thinking的完整流程。该模型具备强大的视觉语言理解能力,支持图像、视频、OCR等多模态处理。文章详细阐述了本地化部署的优势(数据安全、成本可控、低延迟响应)、GPU资源规划方法,并重点推荐使用vLLM框架进行部署,因其具备高吞吐量、高效内存管理等特性。安装指南部分提供了NVIDIA驱动、CUDA Toolkit 12.8和cuDNN的详细安装步骤,确保环境配置正确。通过4张TITAN RTX GPU(96GB显存)的硬件

2025-10-27 14:21:24 2829

原创 项目实践4—全球证件智能识别系统(调用图文多模态大模型API进行版面翻译)

本文介绍"证照智能识别系统"后端服务的重大升级,重点集成图文多模态大模型以实现深度识别与翻译功能。系统在前端开发完成后,将引入Qwen3-VL-8B大模型解决传统OCR在全球证件识别中的版式多样性、多语言支持等难题。升级方案包括:通过FastAPI新增图像处理模块,支持证件图像拼接和大模型API调用;将传统"模板匹配"升级为"内容级深度解析",实现多语言OCR识别、翻译和结构化输出。大模型的零样本识别、语义理解等优势显著提升了系统在复杂场景下的处理

2025-10-22 16:15:03 1083

原创 项目实践3—全球证件智能识别系统(FastAPI后端数据库建模和图像检索)

本文介绍了"证照快速检索系统"的后端开发方案。系统采用FastAPI框架构建,使用SQLModel进行数据库操作,通过预训练MobileNet模型提取图像特征向量。核心功能是比对上传证件与标准模板的相似度,采用余弦相似度计算匹配度。数据库设计包含国家模型和证件模板模型,使用Alembic进行迁移管理。系统通过限定国家范围、白光图像比对等策略提高检索效率,当相似度超过阈值时返回匹配模板。整套方案实现了证照智能化识别与检索功能。

2025-10-22 14:41:01 776

原创 项目实践2—全球证件智能识别系统(Qt客户端与FastAPI后端交互)

本文介绍了全球证件智能识别系统Qt客户端开发中"国家代码"模块的实现。该模块通过集成ISO 3166-1标准的国家代码数据,设计为可编辑下拉列表(QComboBox)并配合QCompleter实现模糊匹配功能。文章详细阐述了三个关键步骤:1)功能设计思路,说明国家代码预选能提升后端识别效率;2)数据封装,创建CountryData类独立管理国家代码数据;3)界面集成,在主工具栏添加控件并实现动态匹配功能。该模块通过解耦数据和界面,优化了用户交互体验,为后续图像上传与识别奠定了基础。

2025-10-21 11:46:12 1126

原创 项目实践1—全球证件智能识别系统(Qt客户端开发)

本文介绍了一款智能证件识别系统的开发过程。该系统针对全球化背景下跨国证件识别难题,通过多光谱图像采集设备(自然光/红外光/紫外光)获取高质量图像,结合Qt客户端和FastAPI后端构建完整解决方案。开发环境配置包括Windows 10下的Qt 5.15.2客户端开发(兼容Win7及以上)和Ubuntu 22.04下的FastAPI后端服务。重点详述了Qt客户端的开发步骤:创建应用程序框架、设置窗体属性(标题/大小/高DPI支持)、添加程序图标等基础功能模块,为后续证件图像采集和处理功能奠定基础。该系统旨在实

2025-10-16 06:54:44 852

原创 企业级实战:构建基于Qt、C++与YOLOv8的模块化工业视觉检测系统(基于QML)

本文提出了一套基于Qt Quick(QML)和C++的工业视觉异常检测解决方案。系统采用前后端分离架构,前端使用QML构建交互界面,后端通过C++动态链接库封装核心AI算法。方案采用YOLOv8模型进行目标检测,通过OpenCV DNN模块实现CPU端推理,支持冲压件关键特征的自动化检测。系统具备图像加载、交互式ROI定义、智能检测和结果可视化功能,可有效提升工业质检的效率和精度。技术选型包括Qt 5.15.2、OpenCV 4.12.0等成熟框架,确保系统稳定性和跨平台兼容性。

2025-09-18 11:44:24 1226

原创 企业级实战:构建基于Qt、C++与YOLOv8的模块化工业视觉检测系统(基于QWidget)

在追求高效与精密的现代制造业中,自动化光学检测(AOI)已成为保障产品质量的核心技术。传统的质检流程往往受限于人工效率与主观判断,难以满足大规模、高精度的生产需求。本文旨在研发一套完整的、企业级的工业视觉异常检测解决方案,通过构建一个功能强大的桌面应用程序,实现对金属冲压件关键特征的自动化、高精度检测。该项目将采用模块化的软件工程思想,将核心的AI算法逻辑与前端用户界面彻底分离。算法部分将封装为一个独立的C++动态链接库(DLL),而用户交互界面则使用Qt 5.15.2的Widget框架进行开发。

2025-09-15 22:45:02 1120 1

原创 基于AI的科研图像生成方法探究:以Nano Banana为例

本文介绍了使用Nano Banana生成机器视觉学术配图的方法。通过输入包含机器视觉系统组成、核心特点、应用场景等详细文献信息,结合参考图的配色与风格,DeepSeek V3生成了专业英文提示词。该提示词要求绘制工业检测系统的示意图,包含硬件组件(光源、相机等)、数据处理流程(图像采集到缺陷检测)和结果分析三部分,采用蓝绿色系简约风格,突出系统协同工作原理。这种AI辅助绘图方法为科研配图提供了新思路,特别适合需要快速生成复杂系统示意图的场景。最终生成的图表符合学术发表要求,能清晰展示机器视觉"高效

2025-09-08 07:45:32 455

原创 一文掌握工业缺陷检测项目实战(Pytorch算法训练、部署、C++ DLL制作、Qt集成)

摘要:工业AI视觉检测标准化实践 本文提出一套端到端的工业AI视觉检测标准化工作流,涵盖从数据标注到模型部署全流程。核心内容包括:1)基于LabelMe工具构建标准COCO数据集;2)选用torchvision内置的Faster R-CNN模型,兼顾精度与易用性;3)采用ONNX Runtime实现跨平台高性能部署;4)通过C++动态链接库封装实现算法与应用分离。文章详细解析了Faster R-CNN两阶段检测原理,并提供了PCB缺陷检测的完整实现方案,包括环境配置、数据准备和标注指南。该方案为工业瑕疵检测

2025-09-06 19:16:37 2860 9

原创 从零打造一款专业级多光谱文档扫描与识别软件(基于 Qt 5.14 + OpenCV + FastAPI)

摘要: 本文介绍了一款基于Qt 5.14的多光谱文档扫描与识别软件开发过程。该软件旨在通过现代化界面和高效的多光谱采集设备,快速验证各类证件和文档的真伪。开发采用Qt Quick框架,集成OpenCV 4.11.0进行图像处理,并支持MSVC 2017 64位编译器。文章详细展示了从项目创建、环境配置到工程文件修改的全流程,包括Qt模块选择、OpenCV库链接及硬件通信库的集成。项目采用模块化设计,后续将逐步实现图像采集、OCR识别等功能,为开发者提供完整的实战参考。

2025-08-25 12:35:34 1151

原创 Python调用硅基流动大语言模型

本文介绍了如何使用SiliconFlow API调用语言模型和图文多模态模型。首先需安装openai和pillow库。语言模型调用示例展示了如何通过DeepSeek-V3模型获取关于中国大模型行业2025年发展的分析。图文模型部分详细说明了如何将本地图片转换为WebP格式的Base64字符串,并通过GLM-4.5V模型进行OCR识别。两个示例均采用流式响应处理,支持实时输出结果。文中的代码片段可直接用于实际开发,只需替换API密钥和图片路径即可。

2025-08-24 16:30:44 756

原创 AI质检数据准备利器:基于Qt/QML 5.14的图像批量裁剪工具开发实战

本文介绍了一个基于Qt和QML开发的工业质检数据预处理工具,旨在解决AI计算机视觉项目中手动裁剪训练样本的低效问题。该工具采用前后端分离架构:C++后端负责图像加载、坐标转换和裁剪保存逻辑,QML前端实现用户交互界面。核心功能包括:1)加载高分辨率工业图像;2)通过鼠标拖拽框选目标区域;3)一键裁剪并自动保存为序列编号的JPG文件;4)自动创建输出目录并提供操作反馈。该工具可显著提升AI质检项目的数据准备效率,避免传统人工裁剪方式的重复劳动和错误风险。

2025-08-10 20:11:42 848

原创 基于Qt/QML 5.14和YOLOv8的工业异常检测Demo:冲压点智能识别

本文介绍了一个基于Qt和OpenCV的工业质检自动化Demo项目,通过YOLOv8模型实现金属件冲压点的智能检测。项目采用Qt 5.14 QML构建现代化UI界面,支持用户框选产品区域并自动识别两个关键冲压点。技术架构采用前后端分离设计:前端QML负责图像显示和交互,后端C++处理图像裁剪、ONNX模型推理等核心功能。项目重点解决了大尺寸图像处理、坐标转换、模型推理等关键技术问题,并考虑工业环境下的兼容性需求(支持Windows 7 64位系统)。该方案验证了AI技术在提升质检效率和准确性方面的潜力,为工业

2025-08-10 13:51:42 1140

原创 解决docker load加载tar镜像报json no such file or directory的错误

摘要:解决Docker加载离线镜像时出现"json no such file"错误的方法是将镜像文件重新打包。具体步骤为:先用tar -xvf解压原.tar文件,删除原文件后,再用tar -cvf重新压缩当前目录所有文件。该方法有效但原因不明,推测可能是跨设备拷贝时压缩方式不一致导致的。这种重新打包的方式能确保文件结构正确,从而解决加载问题。(149字)

2025-08-05 16:36:26 4764

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——9. 接入真实硬件:驱动USB摄像头

本文介绍了将静态图像检测升级为动态视频流检测的关键技术方案。主要内容包括:1)使用Qt Multimedia模块实现USB摄像头驱动,捕获实时视频帧;2)设计多线程架构,将摄像头采集和AI推理任务放在独立工作线程,避免阻塞UI线程;3)通过QVideoFrame到cv::Mat的转换实现视频帧处理;4)构建CameraWorker类实现后台处理逻辑,通过信号槽机制与主线程通信。该方案适用于工业流水线等实时检测场景,在保证界面流畅性的同时完成动态视频分析任务。

2025-08-03 20:56:33 1044

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——8. AI赋能(下):在Qt中部署YOLOv8模型

本文介绍了如何在C++中集成ONNX模型进行AI推理,重点讲解了YOLOv8模型的加载、预处理和后处理流程。主要内容包括: 使用OpenCV DNN模块加载ONNX模型文件 图像预处理:调整尺寸、归一化、通道转换 执行模型推理获取原始输出 关键的后处理技术:解析YOLOv8输出张量,提取边界框、置信度和类别信息 非极大值抑制(NMS)处理重叠检测框 文章提供了完整的C++代码示例,展示了如何将AI模型从训练阶段过渡到实际部署应用,实现从算法研发到软件落地的关键一步。特别强调了类别名称与训练配置的一致性要求,

2025-07-30 20:23:34 1275

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——7. AI赋能(上):训练你自己的YOLOv8瑕疵检测模型

本文介绍了如何利用YOLOv8深度学习算法实现工业螺丝表面瑕疵检测。传统OpenCV算法在处理几何特征明确的测量任务上表现优异,但在检测形态复杂的表面瑕疵时存在局限性。文章详细阐述了从传统算法向深度学习的范式转变,重点讲解了目标检测的核心概念和YOLOv8的优势。 主要内容包括: Python环境的搭建与虚拟环境配置 数据准备工作,包括对MVTec AD数据集中螺丝瑕疵的分类合并策略 使用Labelme工具进行图像标注的详细流程 将标注数据转换为YOLO格式的方法 文章特别强调了现代工业视觉检测中&quot

2025-07-29 21:28:25 952

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——6. 传统算法实战:用OpenCV测量螺丝尺寸

本文介绍了如何利用OpenCV实现螺丝尺寸自动测量的视觉算法。主要内容包括:1)通过灰度转换和二值化进行图像预处理,突出目标特征;2)使用轮廓发现算法提取螺丝边界;3)计算最小外接矩形获取精确尺寸;4)将结果可视化并返回界面显示。重点讲解了cv::findContours和cv::minAreaRect等核心功能的实现方法,展示了从原始图像到几何尺寸测量的完整流程。该方案适用于工业检测中的非接触式测量场景,为后续质量判定打下基础。

2025-07-26 11:04:55 1205 1

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——5. 集成OpenCV:让程序拥有“视力”

本文介绍了在Qt项目中集成OpenCV库并实现图像显示功能的关键步骤。首先详细说明了OpenCV的安装配置过程,包括CMake文件的修改和路径设置。然后介绍了MVTec AD工业数据集的组织结构和使用方法。重点讲解了通过QQuickImageProvider构建前后端桥梁,实现了OpenCV的cv::Mat与Qt的QImage之间的格式转换。文章提供了完整的代码示例,包括ImageProvider类的实现细节,使程序能够将处理后的图像传递到QML界面显示。这些技术为后续开发AI视觉检测功能奠定了基础。

2025-07-25 21:52:40 1340

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——4. 前后端联动:打通QML与C++的任督二脉

本文介绍了如何通过MVVM架构实现QML前端与C++后端的双向通信。首先创建了一个继承QObject的Backend类,使用Q_INVOKABLE宏使C++方法可被QML调用,并通过信号机制实现C++到QML的数据传递。然后通过设置QML上下文属性,将Backend实例注入到QML环境中。最后在QML界面中直接调用C++方法并响应状态更新信号,实现了前后端的解耦交互。这种架构模式让界面与业务逻辑分离,便于维护和扩展。

2025-07-24 20:39:25 1194 3

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——3. QML入门:像搭积木一样构建UI

本文介绍了使用Qt Quick和QML语言构建现代化用户界面的方法。首先讲解了QML的基础语法和组件结构,通过示例演示了如何创建基本UI元素并实现交互功能。随后详细介绍了布局技巧,包括使用ColumnLayout和RowLayout进行响应式设计。文章以"ScrewDetector"项目为例,展示了如何将界面划分为图像显示区、结果展示区和控制区三大功能区域,并提供了完整的QML代码实现主界面静态布局。通过属性绑定和信号处理机制,开发者可以轻松构建美观、动态的应用程序界面,同时保持前端界面

2025-07-23 20:18:05 1073

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——2. C++基础:构建程序的坚实骨架

本文介绍了Qt控制台应用开发中C++核心语法知识,重点讲解了变量与数据类型、函数封装、循环与容器三大核心内容。文章通过"AI螺丝瑕疵检测系统"案例,演示了如何使用基本数据类型、QString字符串类、qDebug输出方法;展示了如何将质检逻辑封装为可复用的函数;并利用QVector容器和for循环实现了批量产品质检功能,为后续视觉算法开发打下基础。所有示例均采用Qt控制台程序形式,便于读者专注于C++语法学习。

2025-07-22 14:05:23 1067

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——1. 启航:你的第一个工业视觉应用

本文介绍了基于Qt 6的工业AI视觉检测软件开发全流程。项目面向工业4.0需求,通过机器视觉技术实现精密元器件的自动瑕疵检测。系统采用Qt Quick构建现代化UI,集成YOLOv8深度学习模型进行实时检测,支持与PLC硬件联动和数据上报MES系统。文章详细说明了开发环境配置(Qt 6.9.1+MSVC+OpenCV)、项目创建步骤、应用程序图标设置等关键环节,并提供了完整的开源代码仓库链接。该方案可替代传统人工目检,实现高效、精准的工业质量控制自动化。

2025-07-21 20:24:24 1884 2

原创 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——0. 博客系列大纲

本系列教程将完整构建一个基于Qt 6的AI螺丝瑕疵检测系统,通过15篇循序渐进的文章,系统讲解从QML界面开发、C++后端逻辑、OpenCV视觉处理到YOLOv8模型部署的全流程。内容涵盖工业视觉核心功能(尺寸测量、瑕疵检测)、硬件集成(摄像头、串口通信)、数据上报(HTTP通信)以及跨平台打包部署,最终实现一个具备自动更新功能的企业级应用。每篇教程都提供可独立运行的代码示例,帮助开发者掌握从算法研发到产品落地的全栈技能。

2025-07-21 12:35:12 924

原创 AI慧眼识真伪:如何用深度学习打造一台车牌真伪自动鉴别仪

本文提出一种基于深度学习的新方法,用于快速精准鉴别机动车号牌真伪。系统采用两阶段识别流程:首先通过YOLO算法定位并分割号牌字符,然后利用孪生神经网络将分割字符与标准字体模板进行相似度比对。方案采用封闭式暗箱设计,配备高分辨率工业相机和无影光源,确保图像采集质量。相比传统人工鉴别,该方法实现了自动化、快速化的车牌真伪识别,具有显著的效率和准确性优势,为交通管理和公共安全领域提供了实用工具。

2025-07-20 20:43:13 1092

原创 使用Qt6 QML/C++ 和CMake构建海康威视摄像头应用(代码开源)

本文介绍如何将海康威视USB工业相机的MFC C++ Demo移植到Qt6 QML技术栈。教程分为准备工作、项目创建、SDK集成和C++控制器封装三部分。首先需要安装Qt6、海康MVS SDK并准备相机设备。然后创建Qt Quick项目,修改CMake配置集成海康SDK,最后封装CameraController类作为QML与相机SDK的桥梁。项目采用Qt6 QML作为UI框架,C++处理业务逻辑,CMake构建系统,实现相机的发现、连接、控制和视频显示功能。完整代码已开源在GitHub。

2025-07-20 18:59:16 1653 4

简单实用的基于python的中文OCR字符识别

基于windows平台的简单实用的中文OCR识别代码,基于python实现。内附安装包。教程参考:https://mp.csdn.net/postedit/82892805

2018-09-29

深度学习python安装包

用于深度学习的python完整安装包 包括python3.5.3 cudnn5.1 下载该资源的朋友额外还需要下载cuda_8.0.44_win10 由于这个文件很大所以没有放进来。这里面的cudnn5.1是量身为cuda8.0准备的

2018-09-13

MySql 5.6.40 win64位

MySql早期版本数据库 ,已经添加my.ini文件 根据自己的放置位置,修改其中的basedir和datadir路径即可

2018-06-29

一款好看的展示列表(基于Bootstrap)

这是一款比较好看的展示列表,功能主要实现招聘列表页面。无需安装bootstrap,通过浏览器直接打开其中的html文件即可看到效果。比较简单实用

2019-03-22

富文本使用案例

django富文本使用简明教程(基于百度Ueditor编辑器,windows平台) 可以提取富文本文字和图片 python 3.6,django==1.11.14 实现过程可以参考教程 https://mp.csdn.net/postedit/88389535

2019-03-12

基于django的人脸检测Web平台搭建(基于Opencv)

通过django搭建的人脸检测web平台,以单独的api接口形式对外提供调用

2019-04-07

结合Django和Bootstrap开发搜索框功能(详细教程,内含源代码,Windows平台开发)

前端使用Bootstrap构建搜索框; 搜索框输入关键词按下回车,关键词数据以表单形式发送至后台服务器; 服务器收到请求,通过路由url解析后找到对应的视图处理函数进行处理; 视图处理函数从request.get中获得关键词数据,然后通过数据库匹配查找对应的数据信息并返回结果; 前端收到返回的页面内容进行渲染; 环境 python3.6.1     Django 1.11.14      windows 10

2019-03-05

网页JS调用MFC的ActiveX控件函数源代码

网页JS调用MFC的ActiveX控件函数简单示例代码,采用VS2010开发

2018-08-06

根据原图和对应的alpha图提取前景并且合成新图(基于python+opencv)

根据原图和对应的alpha图提取前景并且合成新图(基于python+opencv) 具体可以参考我的论文博客:https://blog.csdn.net/qianbin3200896/article/details/87934119

2019-02-26

基于MFC的ActiveX控件开发(JS传递变量数据给控件)

基于MFC的ActiveX控件开发(JS传递变量数据给控件),包含代码和html文件

2018-08-06

Windows下BPG图像官方压缩和解压缩工具

Windows下进行压缩和解压缩的官方bpg工具,通过该工具包可以实现高压缩比的图像压缩和解压缩。 具体使用方式参考博客教程: https://mp.csdn.net/postedit/82849912

2018-09-26

完整的MFC程序打包方案(基于advanced installer)(附教程)

教程地址:https://blog.csdn.net/qianbin3200896/article/details/88987802 完整的MFC打包程序,基于advanced installer 能够开机自启动,能够处理批文件bat

2019-04-03

C#桌面程序与Django通信(前后端分离机制)

实现C#桌面程序与Django通信(前后端分离机制),全部在windows下运行。如果安装了VS2015那么可以直接打开运行

2018-11-11

django通过ajax实现的在线计算器程序(界面精美)

django通过ajax实现的在线计算器程序(界面精美)。采用bootstrap为前端框架。python版本:3.6.1 django=1.11.17 在windows7下也可用

2018-12-13

基于MFC的网页端ActiveX控件demo程序(VS2010)

基于VS2010开发的网页端ActiveX控件实例。采用VS2010开发

2018-08-06

testpro.rar

本demo演示了如何使用ie浏览器显示webp格式图片,使用了django2技术来创建项目。一些核心的js文件可以在项目的app目录下的static文件中找到。html脚本文件可以在app目录的templates文件中找到

2020-08-14

django制作的在线计算器

django开发的在线计算器实例,也可以通过访问http://106.12.16.193:5000/浏览效果

2019-01-15

Django结合Bootstrap完美实现分页效果

Django结合Bootstrap完美实现分页效果,其中控件的分页根据内容自适应调整

2019-01-31

django操作word实现文字和图片的替换

django操作word实现文字和图片的替换,能够控制图片大小。项目采用VS2015开发,如果已经在VS2015中安装了django可以直接打开使用,没有安装的话采用其他IDE也一样可以跑起来 python版本3.6.1

2018-08-23

Django富文本应用

Django 富文本使用技术 能够在网页用嵌入图像和文字,并且可以自定义位置。主要可用于博客正文内容,或者新闻正文内容

2018-12-05

高精度二维码识别(opencv微信扫码)

高精度二维码识别(opencv微信扫码)

2025-02-25

基于Django开发的人脸识别系统,含完整代码和模型文件

使用Django+Bootsrap+深度学习开发的人脸识别系统。有配套教程:

2025-02-20

nuitka打包过程中依赖的c++编译工具

nuitka打包过程中依赖的c++编译工具

2025-01-04

Bootstrap5的精简资源

Bootstrap5的精简资源

2024-12-29

老照片修复方向论文《Contextual-Assisted Scratched Photo Restoration》

W. Cai, H. Zhang, X. Xu, S. He, K. Zhang and J. Qin, "Contextual-Assisted Scratched Photo Restoration," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 10, pp. 5458-5469, Oct. 2023

2024-11-29

qt widget 开发的usb摄像头视频采集和截图程序

qt widget 开发的usb视频采集和截图程序

2024-06-10

一个干净的qt示例工程

一个干净的qt示例工程(界面美观)

2024-06-04

PaddleLite2.12版本对应的C++库,用于开发Windows32位程序

PaddleLite2.12版本对应的C++库,用于开发Windows32位程序。使用VS2017进行编译,配套有详细的博客教程(https://blog.csdn.net/qianbin3200896/article/details/120019597)。目前官网没有给出对应的适合windows32位的paddlelite库,有需要的用户可以下载使用。需要注意,本资源中不含python安装包,只有C++版的sdk。

2024-05-18

利用Python的OpenCV和Pillow实现图片加水印(效果精美)

利用Python的OpenCV和Pillow实现图片加水印,实现简单、效果精美。 函数作了封装,使用和修改便捷

2024-01-06

基于DINOV2模型的图像相似度计算完整代码和数据

基于DINOV2模型的图像相似度计算完整代码和数据

2023-12-19

面向Windows在C++中调用Pytorch模型(MNIST手写体数字识别)

使用pytorch从模型训练到模型调用,再通过libtorch转成C++调用,全流程实现MNIST手写体数字识别

2019-11-01

PaddleLite在windows下编译需要的dirent.h文件

PaddleLite在windows下编译需要的dirent.h文件

2021-08-31

xfeatures2d.rar

opencv依赖的配置文件xfeatures2d

2021-05-23

基于深度学习的人脸检测和人脸关键点检测代码

基于深度学习的人脸检测和人脸关键点检测,包含python和C++两个版本,提供了所有代码和运行数据

2022-01-26

使用pyhton实现的学生成绩统计(操作excel).rar

python脚本实现学生成绩统计

2021-09-08

科技公司官网模板.rar

科技型公司官网模板 包含html、css、js等基本文件。

2019-05-14

vote12345.rar

用django开发的一个简易投票系统(基于bootstrap),其中对每个投票者的ip地址进行了限定(每个ip只能投1次票)。可以通过后台管理查看投票信息

2019-05-21

Python Web第2课代码.rar

Python Web开发第二课代码

2021-09-14

WebP-Python代码.rar

利用python对图像进行编码和解码。提供了完整的编码和解码示例。采用的包为webp。

2019-10-28

OA模板.rar

自己搜寻的两款好看的OA模板。因为开发需要,在各大网站山找了一通模板,就找到两款个人认为适合进行二次开发的(无论是美观性上还是资源丰富程度上)

2019-08-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除