开源车牌数据集CCPD介绍

传统车牌检测和识别都是在小规模数据集上进行实验和测试,所获得的算法模型无法胜任环境多变、角度多样的车牌图像检测和识别任务。为此,中科大团队建立了CCPD数据集,这是一个用于车牌识别的大型国内停车场车牌数据集,该团队同时在ECCV2018国际会议上发表论文Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline, 论文和数据集下载地址:https://github.com/detectRecog/CCPD

该数据集在合肥市的停车场采集得来,采集时间早上7:30到晚上10:00。停车场采集人员手持Android POS机对停车场的车辆拍照并手工标注车牌位置。拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、阴雨天、雪天等等。CCPD数据集一共包含将近30万张图片,每种图片大小720x1160x3。一共包含8项,具体如下:

类型图片数说明
ccpd_base199998正常车牌
ccpd_challenge10006比较有挑战性的车牌
ccpd_db20001光线较暗或较亮
ccpd_fn19999距离摄像头较远或较近
ccpd_np3036没上牌的新车
ccpd_rotate9998水平倾斜20-50°,垂直倾斜-10-10°
ccpd_tilt10000水平倾斜15-45°,垂直倾斜15-45°
ccpd_weather9999雨天、雪天或者雾天的车牌
总共:283037张车牌图像

部分照片示例如下:

CCPD数据集没有专门的标注文件,每张图像的文件名就是对应的数据标注(label)。

例如:025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg

由分隔符'-'分为几个部分:

1) 025为区域, 

2) 95_113 对应两个角度, 水平95°, 竖直113°

3) 154&383_386&473对应边界框坐标:左上(154, 383), 右下(386, 473)

4) 386&473_177&454_154&383_363&402对应四个角点坐标

5) 0_0_22_27_27_33_16为车牌号码 映射关系如下: 第一个为省份0 对应省份字典皖, 后面的为字母和文字, 查看ads字典.如0为A, 22为Y....

具体的,省份对应标签如下:

{
  "皖": 0,
  "沪": 1,
  "津": 2,
  "渝": 3,
  "冀": 4,
  "晋": 5,
  "蒙": 6,
  "辽": 7,
  "吉": 8,
  "黑": 9,
  "苏": 10,
  "浙": 11,
  "京": 12,
  "闽": 13,
  "赣": 14,
  "鲁": 15,
  "豫": 16,
  "鄂": 17,
  "湘": 18,
  "粤": 19,
  "桂": 20,
  "琼": 21,
  "川": 22,
  "贵": 23,
  "云": 24,
  "西": 25,
  "陕": 26,
  "甘": 27,
  "青": 28,
  "宁": 29,
  "新": 30
}

字母和数字对应的标签如下:

{
  "a" : 0,
  "b" : 1,
  "c" : 2,
  "d" : 3,
  "e" : 4,
  "f" : 5,
  "g" : 6,
  "h" : 7,
  "j" : 8,
  "k" : 9,
  "l" : 10,
  "m" : 11,
  "n" : 12,
  "p" : 13,
  "q" : 14,
  "r" : 15,
  "s" : 16,
  "t" : 17,
  "u" : 18,
  "v" : 19,
  "w" : 20,
  "x":  21,
  "y" : 22,
  "z" : 23,
  "0" : 24,
  "1" : 25,
  "2" : 26,
  "3" : 27,
  "4" : 28,
  "5" : 29,
  "6" : 30,
  "7" : 31,
  "8" : 32,
  "9" : 33
}

 

已标记关键词 清除标记
【为什么学Python】 Python 是当今非常热门的语言之一,2020年的 TIOBE 编程语言排行榜中 ,Python名列第一,并且其流行度依然处在上升势头。 在2015年的时候,在网上还经常看到学Python还是学R的讨论,那时候老齐就选择了Python,并且开始着手出版《跟老齐学Python》。时至今日,已经无需争论。Python给我们带来的,不仅仅是项目上的收益,我们更可以从它“开放、简洁”哲学观念中得到技术发展路线的启示。 借此机会,老齐联合CSDN推出了本课程,希望能影响更多的人走进Python,踏入编程的大门。 【课程设计】 本课程共包含三大模块: 一、基础知识篇 内置对象和基本的运算、语句,是Python语言的基础。本课程在讲解这部分知识的时候,不是简单地将各种知识做简单的堆砌,而是在兼顾内容的全面性的同时,更重视向学习者讲授掌握有关知识的方法,比如引导学习者如何排查错误、如何查看和理解文档等。   二、面向对象篇 “面向对象(OOP)”是目前企业开发主流的开发方式,本课程从一开始就渗透这种思想,并且在“函数”和“类”的学习中强化面向对象开发方式的学习——这是本课程与一般课程的重要区别,一般的课程只在“类”这里才提到“对象”,会导致学习者茫然失措,并生畏惧,乃至于放弃学习。本课程则是从开始以“润物细无声”的方式,渗透对象概念,等学习到本部分的时候,OOP对学习者而言有一种“水到渠成”的感觉。   三、工具实战篇 在项目实战中,除了前述的知识之外,还会用到很多其他工具,至于那些工具如何安装?怎么自己做工具?有那些典型工具?都是这部分的内容。具体来说,就是要在这部分介绍Python标准库的应用以及第三方包的安装,还有如何开发和发布自己的工具包。此外,很多学习Python的同学,未来要么从事数据科学、要么从事Web开发,不论哪个方向,都离不开对数据库的操作,本部分还会从实战的角度,介绍如何用Python语言操作常用数据库。
相关推荐
手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页