HDU 5778 (压缩范围枚举暴力跑素数表)

本文介绍了一种高效算法,用于解决寻找一个数y的问题,使得(y-x)的绝对值最小,同时y的质因数分解中每个质因数恰好出现两次。通过将问题规模缩小并利用素数特性,实现了快速求解。

题意:给出一个数x,找出一个数y满足(y-x)的绝对值最小,并且分解y的质因数时,每个数刚好出现两次。求最小的y-x并输出。


解题思路:因为x的范围是1e18所以直接暴力跑是不可能的。那就先把x开方数据缩小到1e9,这时z=sqrt(x)的质因数分解每个数只能出现一次,出现两次则不符合条件。

让z对小于他的素数的平方取余若有一个为0,则不满足条件,因为z的范围是1e9,所以素数表范围到1e5就可以了。枚举小于z的最近满足条件的点,再找出大于z的最近满足条件的点。最后比较两者谁的绝对值最小。另外需要注意,y的最小值应该大于等于2。


题目链接:


AC代码:

#include <iostream>
#include <stdio.h>
#include <cmath>
#include <cstring>
#include <queue>
#include <algorithm>

using namespace std;
typedef long long ll;
typedef long long LL;
const ll maxn=100000;

//prime[]存储了小于n的素数,下标从1开始
//visit[]数组标记了是否为素数,bool类型
//返回值num表示小于n的素数的个数
ll prime[maxn];
bool visit[maxn];
ll num=0;

void init_prim(ll n)
{
    memset(visit, true, sizeof(visit));
    for (ll i = 2; i <= n; ++i)
    {
        if (visit[i] == true)
        {
        num++;
        prime[num] = i;
        }
        for (ll j = 1; ((j <= num) && (i * prime[j] <= n)); ++j)
        {
            visit[i * prime[j]] = false;
            if (i % prime[j] == 0) break; //点睛之笔
        }
    }
    //return num;//返回质数个数
}

int judge(ll z)
{
    for(int i=1;i<num&&prime[i]*prime[i]<=z;i++)
    {
        if(z%(prime[i]*prime[i])==0)
            return 0;
    }
    return 1;
}

int main()
{
    int T;
    ll x;
    init_prim(maxn);
    scanf("%d",&T);
    while(T--)
    {
        scanf("%I64d",&x);
        ll z=(ll)sqrt(1.0*x);
        ll a1=z,a2=z;
        while(a1*a1<x)  a1++;
        while(a2*a2>x)  a2--;
        while(!judge(a1))   a1++;
        while(!judge(a2))   a2--;
        a1=max((ll)2,a1);///最小为2
        a2=max((ll)2,a2);///最小为2,
        ll ans=min(abs(a1*a1-x),abs(a2*a2-x));
        printf("%I64d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值