HDU 5794 A Simple Chess(多校,dp,容斥)

题意:一匹”马”在棋盘上( 1 ,1)的位置,每次跳跃时横纵坐标都必须增大.棋盘上还有 K 个障碍物(保证不在(1, 1 )处).求跳到(n, m )的方案数,对素数P= 110119 取模.

解题思路: 存障碍点的时候要进行筛选,从( 0 ,0)点到( n ,m)不经过的障碍点不存入,之后对点进行按照 x y进行,进行了这个预处理之后后面的dp就很简单了。主要是结合lucas定理,当lucas中传入的值 0时注意输出0,这点不要忘记处理,不然会RE。代码中注释的非常清楚,不懂得可以看一下每一步的实现,想着挺麻烦的,其实实现起来还挺简单的细心一点把细节处理好就行。

AC代码:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <complex>
#include <cstdio>
using namespace std;
#define ll long long
#define mod 110119
ll n,m,r,ca,cnt,a,b,rig,up;
ll factorial[110200];

ll mod_pow(ll a,ll n,ll p)
{
    ll ret=1,A=a;
    for(; n ; A=(A*A)%p,n>>=1) if(n & 1)ret=(ret*A)%p;
    return ret;
}

void init_factorial(ll p)
{
    factorial[0] = 1;
    for(ll i = 1;i <= p;i++)factorial[i] = factorial[i-1]*i%p;
}

ll C(ll a,ll k,ll p) //求C(n,m)%p p最大为10^5。a,b可以很大!  a个数中挑k个的组合数
{
    ll re = 1;
    for(; a && k ; a /= p , k /= p){
        ll aa = a%p;ll bb = k%p;
        if(aa < bb) return 0; //这个是最后的改动!
        re = re*factorial[aa]*mod_pow(factorial[bb]*factorial[aa-bb]%p,p-2,p)%p;//这儿的求逆不可先处理
    }
    return re;
}
ll Lucas(ll a,ll k ,ll p){
    if(a<0 || k<0 || a<k)return 0;
    else return C(a,k,p);
}
///以上为lucas算法,将输入为if(a<0 || k<0 || a<k)return 0;
///时直接输出0,当是就是没加这个判断条件,然后就一直RE
struct Point
{
    ll x,y;
    bool operator < (const Point & a) const
    {
        if(x==a.x)  return y<a.y;
        return x<a.x;
    }
}rock[105];///重载小于号,直接sort预处理减少循环


ll dp[105];///dp[]中存的是第i个位,不经过i之前的阻碍点能到达等到达i点的路径个数。
int main()
{
//    freopen("1002.in","r",stdin);
//    freopen("data.out","w",stdout);
    init_factorial(mod);
    ca=1;
    ll x,y;
    while(~scanf("%I64d%I64d%I64d",&n,&m,&r))
    {
        n--;///题目中坐标从1开始,代码中从0开始,方便取模
        m--;
        cnt=0;///cnt存储符合条件的点,从1开始
        for(ll i=0;i<r;i++)
        {
            scanf("%I64d%I64d",&x,&y);
            x--;
            y--;
            ll tx=x;
            ll ty=y;
            a=2*y-x;
            b=2*x-y;
            if(a%3==0&&b%3==0&&a/3>=0&&b/3>=0&&x>=0&&x<=n&&y>=0&&y<=m)///这层的判断,去除不能从(0,0)到达当前点的点
            {
                y=m-y;
                x=n-x;
                a=2*y-x;
                b=2*x-y;
                if(a%3==0&&b%3==0&&a/3>=0&&b/3>=0&&x>=0&&x<=n&&y>=0&&y<=m)///这层判断去除从当前点不能到达(n,m)的点
                {
                    rock[++cnt].x=tx;
                    rock[cnt].y=ty;
                }
            }
        }
        sort(rock+1,rock+cnt+1);///经过筛选之后,rock中所有的点都能到达,并且到达(n,m)点
        if((2*m-n)%3!=0||(2*n-m)%3!=0||(2*m-n)/3<0||(2*n-m)/3<0)///当从(0,0)点不能到达(n,m)点直接输出0
        {
            printf("Case #%I64d: %I64d\n",ca++,(ll)0);
            continue;
        }
        rock[++cnt].x=n;///将(n,m)点存入rock中,这样dp[cnt]直接是答案了
        rock[cnt].y=m;
        for(ll i=1;i<=cnt;i++)
        {
            a=(2*rock[i].y-rock[i].x)/3;
            b=(2*rock[i].x-rock[i].y)/3;
            dp[i]=Lucas(a+b,a,mod);先将地i个点的路径记录下来,
            for(ll j=1;j<i;j++)
            {
                ll ta=rock[i].x-rock[j].x;
                ll tb=rock[i].y-rock[j].y;
                ll taa=(2*ta-tb)/3;
                ll tbb=(2*tb-ta)/3;
                if(rock[i].x>=rock[j].x&&rock[i].y>=rock[j].y)
                    dp[i]=((dp[i]-dp[j]*Lucas(taa+tbb,taa,mod))%mod+mod)%mod;///减去经过之前的点的路径个数

            }

        }
        printf("Case #%I64d: %I64d\n",ca++,dp[cnt]);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值