NumPy doc (七）

11 篇文章 0 订阅
np.bincount(x,  weights=w)
array([ 0.3,  0.7,  1.1])

blackman(M)
Return the Blackman window.

The Blackman window is a taper formed by using the first three
terms of a summation of cosines. It was designed to have close to the
minimal leakage possible.  It is close to optimal, only slightly worse
than a Kaiser window.

Parameters
----------
M : int
Number of points in the output window. If zero or less, an empty
array is returned.

Returns
-------
out : ndarray
The window, with the maximum value normalized to one (the value one
appears only if the number of samples is odd).

--------
bartlett, hamming, hanning, kaiser

Notes
-----
The Blackman window is defined as

.. math::  w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)

Most references to the Blackman window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. It is known as a
"near optimal" tapering function, almost as good (by some measures)
as the kaiser window.

References
----------
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra,
Dover Publications, New York.

Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

Examples
--------
np.blackman(12)
array([ -1.38777878e-17,   3.26064346e-02,   1.59903635e-01,
4.14397981e-01,   7.36045180e-01,   9.67046769e-01,
9.67046769e-01,   7.36045180e-01,   4.14397981e-01,
1.59903635e-01,   3.26064346e-02,  -1.38777878e-17])

Plot the window and the frequency response:

from numpy.fft import fft, fftshift
window = np.blackman(51)
plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Blackman window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
plt.show()

plt.figure()
<matplotlib.figure.Figure object at 0x...>
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Frequency response of Blackman window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
plt.show()

bmat(obj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters
----------
obj : str or array_like
Input data.  Names of variables in the current scope may be
referenced, even if obj is a string.
ldict : dict, optional
A dictionary that replaces local operands in current frame.
Ignored if obj is not a string or gdict is None.
gdict : dict, optional
A dictionary that replaces global operands in current frame.
Ignored if obj is not a string.

Returns
-------
out : matrix
Returns a matrix object, which is a specialized 2-D array.

--------
matrix

Examples
--------
A = np.mat('1 1; 1 1')
B = np.mat('2 2; 2 2')
C = np.mat('3 4; 5 6')
D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])
np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])
np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],
[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

Broadcast any number of arrays against each other.

Parameters
----------
*args : array_likes

subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned arrays will be forced to be a base-class array (default).

Returns
-------
These arrays are views on the original arrays.  They are typically
not contiguous.  Furthermore, more than one element of a
broadcasted array may refer to a single memory location.  If you
need to write to the arrays, make copies first.

Examples
--------
x = np.array([[1,2,3]])
y = np.array([,,])
[array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

Here is a useful idiom for getting contiguous copies instead of
non-contiguous views.

[np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]]), array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])]

Broadcast an array to a new shape.

Parameters
----------
array : array_like
shape : tuple
The shape of the desired array.
subok : bool, optional
If True, then sub-classes will be passed-through, otherwise
the returned array will be forced to be a base-class array (default).

Returns
-------
A readonly view on the original array with the given shape. It is
typically not contiguous. Furthermore, more than one element of a
broadcasted array may refer to a single memory location.

Raises
------
ValueError
If the array is not compatible with the new shape according to NumPy's

Notes
-----

Examples
--------
x = np.array([1, 2, 3])
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])

busday_count(...)
busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)

Counts the number of valid days between begindates and
enddates, not including the day of enddates.

If enddates specifies a date value that is earlier than the
corresponding begindates date value, the count will be negative.

Parameters
----------
begindates : array_like of datetime64[D]
The array of the first dates for counting.
enddates : array_like of datetime64[D]
The array of the end dates for counting, which are excluded
from the count themselves.
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates.  They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.
busdaycal : busdaycalendar, optional
A busdaycalendar object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.
out : array of int, optional
If provided, this array is filled with the result.

Returns
-------
out : array of int
An array with a shape from broadcasting begindates and enddates
together, containing the number of valid days between
the begin and end dates.

--------
busdaycalendar: An object that specifies a custom set of valid days.
is_busday : Returns a boolean array indicating valid days.
busday_offset : Applies an offset counted in valid days.

Examples
--------
# Number of weekdays in January 2011
np.busday_count('2011-01', '2011-02')
21
# Number of weekdays in 2011
np.busday_count('2011', '2012')
260
# Number of Saturdays in 2011
53

busday_offset(...)
busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None)

First adjusts the date to fall on a valid day according to
the roll rule, then applies offsets to the given dates
counted in valid days.

Parameters
----------
dates : array_like of datetime64[D]
The array of dates to process.
offsets : array_like of int
The array of offsets, which is broadcast with dates.
roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional
How to treat dates that do not fall on a valid day. The default
is 'raise'.

* 'raise' means to raise an exception for an invalid day.
* 'nat' means to return a NaT (not-a-time) for an invalid day.
* 'forward' and 'following' mean to take the first valid day
later in time.
* 'backward' and 'preceding' mean to take the first valid day
earlier in time.
* 'modifiedfollowing' means to take the first valid day
later in time unless it is across a Month boundary, in which
case to take the first valid day earlier in time.
* 'modifiedpreceding' means to take the first valid day
earlier in time unless it is across a Month boundary, in which
case to take the first valid day later in time.
weekmask : str or array_like of bool, optional
A seven-element array indicating which of Monday through Sunday are
valid days. May be specified as a length-seven list or array, like
[1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
An array of dates to consider as invalid dates.  They may be
specified in any order, and NaT (not-a-time) dates are ignored.
This list is saved in a normalized form that is suited for
fast calculations of valid days.
busdaycal : busdaycalendar, optional
A busdaycalendar object which specifies the valid days. If this
parameter is provided, neither weekmask nor holidays may be
provided.
out : array of datetime64[D], optional
If provided, this array is filled with the result.

Returns
-------
out : array of datetime64[D]
An array with a shape from broadcasting dates and offsets
together, containing the dates with offsets applied.

--------
busdaycalendar: An object that specifies a custom set of valid days.
is_busday : Returns a boolean array indicating valid days.
busday_count : Counts how many valid days are in a half-open date range.

Examples
--------
# First business day in October 2011 (not accounting for holidays)
np.busday_offset('2011-10', 0, roll='forward')
numpy.datetime64('2011-10-03','D')
# Last business day in February 2012 (not accounting for holidays)
np.busday_offset('2012-03', -1, roll='forward')
numpy.datetime64('2012-02-29','D')
# Third Wednesday in January 2011
numpy.datetime64('2011-01-19','D')
# 2012 Mother's Day in Canada and the U.S.
numpy.datetime64('2012-05-13','D')

# First business day on or after a date
np.busday_offset('2011-03-20', 0, roll='forward')
numpy.datetime64('2011-03-21','D')
np.busday_offset('2011-03-22', 0, roll='forward')
numpy.datetime64('2011-03-22','D')
# First business day after a date
np.busday_offset('2011-03-20', 1, roll='backward')
numpy.datetime64('2011-03-21','D')
np.busday_offset('2011-03-22', 1, roll='backward')
numpy.datetime64('2011-03-23','D')

byte_bounds(a)
Returns pointers to the end-points of an array.

Parameters
----------
a : ndarray
Input array. It must conform to the Python-side of the array
interface.

Returns
-------
(low, high) : tuple of 2 integers
The first integer is the first byte of the array, the second
integer is just past the last byte of the array.  If a is not
contiguous it will not use every byte between the (low, high)
values.

Examples
--------
I = np.eye(2, dtype='f'); I.dtype
dtype('float32')
low, high = np.byte_bounds(I)
high - low == I.size*I.itemsize
True
I = np.eye(2, dtype='G'); I.dtype
dtype('complex192')
low, high = np.byte_bounds(I)
high - low == I.size*I.itemsize
True

can_cast(...)
can_cast(from, totype, casting = 'safe')

Returns True if cast between data types can occur according to the
casting rule.  If from is a scalar or array scalar, also returns
True if the scalar value can be cast without overflow or truncation
to an integer.

Parameters
----------
from : dtype, dtype specifier, scalar, or array
Data type, scalar, or array to cast from.
totype : dtype or dtype specifier
Data type to cast to.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur.

* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.

Returns
-------
out : bool
True if cast can occur according to the casting rule.

Notes
-----
Starting in NumPy 1.9, can_cast function now returns False in 'safe'
casting mode for integer/float dtype and string dtype if the string dtype
length is not long enough to store the max integer/float value converted
to a string. Previously can_cast in 'safe' mode returned True for
integer/float dtype and a string dtype of any length.

--------
dtype, result_type

Examples
--------
Basic examples

np.can_cast(np.int32, np.int64)
True
np.can_cast(np.float64, np.complex)
True
np.can_cast(np.complex, np.float)
False

np.can_cast('i8', 'f8')
True
np.can_cast('i8', 'f4')
False
np.can_cast('i4', 'S4')
False

Casting scalars

np.can_cast(100, 'i1')
True
np.can_cast(150, 'i1')
False
np.can_cast(150, 'u1')
True

np.can_cast(3.5e100, np.float32)
False
np.can_cast(1000.0, np.float32)
True

Array scalar checks the value, array does not

np.can_cast(np.array(1000.0), np.float32)
True
np.can_cast(np.array([1000.0]), np.float32)
False

Using the casting rules

np.can_cast('i8', 'i8', 'no')
True
np.can_cast('<i8', '>i8', 'no')
False

np.can_cast('<i8', '>i8', 'equiv')
True
np.can_cast('<i4', '>i8', 'equiv')
False

np.can_cast('<i4', '>i8', 'safe')
True
np.can_cast('<i8', '>i4', 'safe')
False

np.can_cast('<i8', '>i4', 'same_kind')
True
np.can_cast('<i8', '>u4', 'same_kind')
False

np.can_cast('<i8', '>u4', 'unsafe')
True

choose(a, choices, out=None, mode='raise')
Construct an array from an index array and a set of arrays to choose from.

First of all, if confused or uncertain, definitely look at the Examples -
in its full generality, this function is less simple than it might
seem from the following code description (below ndi =
numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties.  Here is a fully general summary:

Given an "index" array (a) of integers and a sequence of n arrays
(choices), a and each choice array are first broadcast, as necessary,
to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =
0,...,n-1* we have that, necessarily, Ba.shape == Bchoices[i].shape
for each i.  Then, a new array with shape Ba.shape is created as
follows:

* if mode=raise (the default), then, first of all, each element of
a (and thus Ba) must be in the range [0, n-1]; now, suppose that
i (in that range) is the value at the (j0, j1, ..., jm) position
in Ba - then the value at the same position in the new array is the
value in Bchoices[i] at that same position;

* if mode=wrap, values in a (and thus Ba) may be any (signed)
integer; modular arithmetic is used to map integers outside the range
[0, n-1] back into that range; and then the new array is constructed
as above;

* if mode=clip, values in a (and thus Ba) may be any (signed)
integer; negative integers are mapped to 0; values greater than n-1
are mapped to n-1; and then the new array is constructed as above.

Parameters
----------
a : int array
This array must contain integers in [0, n-1], where n is the number
of choices, unless mode=wrap or mode=clip, in which cases any
integers are permissible.
choices : sequence of arrays
Choice arrays. a and all of the choices must be broadcastable to the
same shape.  If choices is itself an array (not recommended), then
its outermost dimension (i.e., the one corresponding to
choices.shape) is taken as defining the "sequence".
out : array, optional
If provided, the result will be inserted into this array. It should
be of the appropriate shape and dtype.
mode : {'raise' (default), 'wrap', 'clip'}, optional
Specifies how indices outside [0, n-1] will be treated:

* 'raise' : an exception is raised
* 'wrap' : value becomes value mod n
* 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
-------
merged_array : array
The merged result.

Raises
------
ValueError: shape mismatch
If a and each choice array are not all broadcastable to the same
shape.

--------
ndarray.choose : equivalent method

Notes
-----
To reduce the chance of misinterpretation, even though the following
"abuse" is nominally supported, choices should neither be, nor be
thought of as, a single array, i.e., the outermost sequence-like container
should be either a list or a tuple.

Examples
--------

choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
np.choose([2, 3, 1, 0], choices
# the first element of the result will be the first element of the
# third (2+1) "array" in choices, namely, 20; the second element
# will be the second element of the fourth (3+1) choice array, i.e.,
# 31, etc.
)
array([20, 31, 12,  3])
np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12,  3])
# because there are 4 choice arrays
np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20,  1, 12,  3])
# i.e., 0

A couple examples illustrating how choose broadcasts:

a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
choices = [-10, 10]
np.choose(a, choices)
array([[ 10, -10,  10],
[-10,  10, -10],
[ 10, -10,  10]])

# With thanks to Anne Archibald
a = np.array([0, 1]).reshape((2,1,1))
c1 = np.array([1, 2, 3]).reshape((1,3,1))
c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[ 1,  1,  1,  1,  1],
[ 2,  2,  2,  2,  2],
[ 3,  3,  3,  3,  3]],
[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])

clip(a, a_min, a_max, out=None)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to
the interval edges.  For example, if an interval of [0, 1]
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

Parameters
----------
a : array_like
Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like
Maximum value.  If a_min or a_max are array_like, then they will
be broadcasted to the shape of a.
out : ndarray, optional
The results will be placed in this array. It may be the input
array for in-place clipping.  out must be of the right shape
to hold the output.  Its type is preserved.

Returns
-------
clipped_array : ndarray
An array with the elements of a, but where values
< a_min are replaced with a_min, and those > a_max
with a_max.

--------
numpy.doc.ufuncs : Section "Output arguments"

Examples
--------
a = np.arange(10)
np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
a = np.arange(10)
a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

column_stack(tup)
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack.  1-D arrays are turned into 2-D columns
first.

Parameters
----------
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.

Returns
-------
stacked : 2-D array
The array formed by stacking the given arrays.

--------
hstack, vstack, concatenate

Examples
--------
a = np.array((1,2,3))
b = np.array((2,3,4))
np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])

common_type(*arrays)
Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar
type, even if all the arrays are integer arrays. If one of the inputs is
an integer array, the minimum precision type that is returned is a
64-bit floating point dtype.

All input arrays can be safely cast to the returned dtype without loss
of information.

Parameters
----------
array1, array2, ... : ndarrays
Input arrays.

Returns
-------
out : data type code
Data type code.

--------
dtype, mintypecode

Examples
--------
np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>

compare_chararrays(...)

compress(condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

When working along a given axis, a slice along that axis is returned in
output for each index where condition evaluates to True. When
working on a 1-D array, compress is equivalent to extract.

Parameters
----------
condition : 1-D array of bools
Array that selects which entries to return. If len(condition)
is less than the size of a along the given axis, then output is
truncated to the length of the condition array.
a : array_like
Array from which to extract a part.
axis : int, optional
Axis along which to take slices. If None (default), work on the
flattened array.
out : ndarray, optional
Output array.  Its type is preserved and it must be of the right
shape to hold the output.

Returns
-------
compressed_array : ndarray
A copy of a without the slices along axis for which condition
is false.

--------
take, choose, diag, diagonal, select
ndarray.compress : Equivalent method in ndarray
np.extract: Equivalent method when working on 1-D arrays
numpy.doc.ufuncs : Section "Output arguments"

Examples
--------
a = np.array([[1, 2], [3, 4], [5, 6]])
a
array([[1, 2],
[3, 4],
[5, 6]])
np.compress([0, 1], a, axis=0)
array([[3, 4]])
np.compress([False, True, True], a, axis=0)
array([[3, 4],
[5, 6]])
np.compress([False, True], a, axis=1)
array([,
,
])

Working on the flattened array does not return slices along an axis but
selects elements.

np.compress([False, True], a)
array()

concatenate(...)
concatenate((a1, a2, ...), axis=0)

Join a sequence of arrays along an existing axis.

Parameters
----------
a1, a2, ... : sequence of array_like
The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).
axis : int, optional
The axis along which the arrays will be joined.  Default is 0.

Returns
-------
res : ndarray
The concatenated array.

--------
ma.concatenate : Concatenate function that preserves input masks.
array_split : Split an array into multiple sub-arrays of equal or
near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into multiple sub-arrays horizontally (column wise)
vsplit : Split array into multiple sub-arrays vertically (row wise)
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
stack : Stack a sequence of arrays along a new axis.
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)

Notes
-----
When one or more of the arrays to be concatenated is a MaskedArray,
but the input masks are *not* preserved. In cases where a MaskedArray
is expected as input, use the ma.concatenate function from the masked

Examples
--------
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
np.concatenate((a, b), axis=0)
array([[1, 2],
[3, 4],
[5, 6]])
np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
[3, 4, 6]])

a = np.ma.arange(3)
b = np.arange(2, 5)
a
fill_value = 999999)
b
array([2, 3, 4])
np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
fill_value = 999999)
np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
mask = [False  True False False False False],
fill_value = 999999)

convolve(a, v, mode='full')
Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it
models the effect of a linear time-invariant system on a signal _.  In
probability theory, the sum of two independent random variables is
distributed according to the convolution of their individual
distributions.

If v is longer than a, the arrays are swapped before computation.

Parameters
----------
a : (N,) array_like
First one-dimensional input array.
v : (M,) array_like
Second one-dimensional input array.
mode : {'full', 'valid', 'same'}, optional
'full':
By default, mode is 'full'.  This returns the convolution
at each point of overlap, with an output shape of (N+M-1,). At
the end-points of the convolution, the signals do not overlap
completely, and boundary effects may be seen.

'same':
Mode same returns output of length max(M, N).  Boundary
effects are still visible.

'valid':
Mode valid returns output of length
max(M, N) - min(M, N) + 1.  The convolution product is only given
for points where the signals overlap completely.  Values outside
the signal boundary have no effect.

Returns
-------
out : ndarray
Discrete, linear convolution of a and v.

--------
scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier
Transform.
scipy.linalg.toeplitz : Used to construct the convolution operator.
polymul : Polynomial multiplication. Same output as convolve, but also
accepts poly1d objects as input.

Notes
-----
The discrete convolution operation is defined as

.. math:: (a * v)[n] = \sum_{m = -\infty}^{\infty} a[m] v[n - m]

It can be shown that a convolution :math:x(t) * y(t) in time/space
is equivalent to the multiplication :math:X(f) Y(f) in the Fourier
circular convolution).  Since multiplication is more efficient (faster)
than convolution, the function scipy.signal.fftconvolve exploits the
FFT to calculate the convolution of large data-sets.

References
----------
..  Wikipedia, "Convolution", http://en.wikipedia.org/wiki/Convolution.

Examples
--------
Note how the convolution operator flips the second array
before "sliding" the two across one another:

np.convolve([1, 2, 3], [0, 1, 0.5])
array([ 0. ,  1. ,  2.5,  4. ,  1.5])

Only return the middle values of the convolution.
Contains boundary effects, where zeros are taken
into account:

np.convolve([1,2,3],[0,1,0.5], 'same')
array([ 1. ,  2.5,  4. ])

The two arrays are of the same length, so there
is only one position where they completely overlap:

np.convolve([1,2,3],[0,1,0.5], 'valid')
array([ 2.5])

copy(a, order='K')
Return an array copy of the given object.

Parameters
----------
a : array_like
Input data.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the copy. 'C' means C-order,
'F' means F-order, 'A' means 'F' if a is Fortran contiguous,
'C' otherwise. 'K' means match the layout of a as closely
as possible. (Note that this function and :meth:ndarray.copy are very
similar, but have different default values for their order=
arguments.)

Returns
-------
arr : ndarray
Array interpretation of a.

Notes
-----
This is equivalent to

np.array(a, copy=True)                              #doctest: +SKIP

Examples
--------
Create an array x, with a reference y and a copy z:

x = np.array([1, 2, 3])
y = x
z = np.copy(x)

Note that, when we modify x, y changes, but not z:

x = 10
x == y
True
x == z
False

copyto(...)
copyto(dst, src, casting='same_kind', where=None)

Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if
where is provided, it selects which elements to copy.

Parameters
----------
dst : ndarray
The array into which values are copied.
src : array_like
The array from which values are copied.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur when copying.

* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
where : array_like of bool, optional
A boolean array which is broadcasted to match the dimensions
of dst, and selects elements to copy from src to dst
wherever it contains the value True.

corrcoef(x, y=None, rowvar=1, bias=<class numpy._NoValue>, ddof=<class numpy._NoValue>)
Return Pearson product-moment correlation coefficients.

Please refer to the documentation for cov for more detail.  The
relationship between the correlation coefficient matrix, R, and the
covariance matrix, C, is

.. math:: R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }

The values of R are between -1 and 1, inclusive.

Parameters
----------
x : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of x represents a variable, and each column a single
observation of all those variables. Also see rowvar below.
y : array_like, optional
An additional set of variables and observations. y has the same
shape as x.
rowvar : int, optional
If rowvar is non-zero (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : _NoValue, optional
Has no affect, do not use.

.. deprecated:: 1.10.0
ddof : _NoValue, optional
Has no affect, do not use.

.. deprecated:: 1.10.0

Returns
-------
R : ndarray
The correlation coefficient matrix of the variables.

--------
cov : Covariance matrix

Notes
-----
This function accepts but discards arguments bias and ddof.  This is
for backwards compatibility with previous versions of this function.  These
arguments had no effect on the return values of the function and can be
safely ignored in this and previous versions of numpy.

correlate(a, v, mode='valid')
Cross-correlation of two 1-dimensional sequences.

This function computes the correlation as generally defined in signal
processing texts::

c_{av}[k] = sum_n a[n+k] * conj(v[n])

with a and v sequences being zero-padded where necessary and conj being
the conjugate.

Parameters
----------
a, v : array_like
Input sequences.
mode : {'valid', 'same', 'full'}, optional
Refer to the convolve docstring.  Note that the default
is valid, unlike convolve, which uses full.
old_behavior : bool
old_behavior was removed in NumPy 1.10. If you need the old
behavior, use multiarray.correlate.

Returns
-------
out : ndarray
Discrete cross-correlation of a and v.

--------
convolve : Discrete, linear convolution of two one-dimensional sequences.
multiarray.correlate : Old, no conjugate, version of correlate.

Notes
-----
The definition of correlation above is not unique and sometimes correlation
may be defined differently. Another common definition is::

c'_{av}[k] = sum_n a[n] conj(v[n+k])

which is related to c_{av}[k] by c'_{av}[k] = c_{av}[-k].

Examples
--------
np.correlate([1, 2, 3], [0, 1, 0.5])
array([ 3.5])
np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([ 2. ,  3.5,  3. ])
np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([ 0.5,  2. ,  3.5,  3. ,  0. ])

Using complex sequences:

np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([ 0.5-0.5j,  1.0+0.j ,  1.5-1.5j,  3.0-1.j ,  0.0+0.j ])

Note that you get the time reversed, complex conjugated result
when the two input sequences change places, i.e.,
c_{va}[k] = c^{*}_{av}[-k]:

np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([ 0.0+0.j ,  3.0+1.j ,  1.5+1.5j,  1.0+0.j ,  0.5+0.5j])

count_nonzero(...)
count_nonzero(a)

Counts the number of non-zero values in the array a.

Parameters
----------
a : array_like
The array for which to count non-zeros.

Returns
-------
count : int or array of int
Number of non-zero values in the array.

--------
nonzero : Return the coordinates of all the non-zero values.

Examples
--------
np.count_nonzero(np.eye(4))
4
np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]])
5

cov(m, y=None, rowvar=1, bias=0, ddof=None, fweights=None, aweights=None)
Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, :math:X = [x_1, x_2, ... x_N]^T,
then the covariance matrix element :math:C_{ij} is the covariance of
:math:x_i and :math:x_j. The element :math:C_{ii} is the variance
of :math:x_i.

See the notes for an outline of the algorithm.

Parameters
----------
m : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of m represents a variable, and each column a single
observation of all those variables. Also see rowvar below.
y : array_like, optional
An additional set of variables and observations. y has the same form
as that of m.
rowvar : int, optional
If rowvar is non-zero (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : int, optional
Default normalization is by (N - 1), where N corresponds to the
number of observations given (unbiased estimate). If bias is 1, then
normalization is by N. These values can be overridden by using the
keyword ddof in numpy versions >= 1.5.
ddof : int, optional
If not None the default value implied by bias is overridden.
Note that ddof=1 will return the unbiased estimate, even if both
fweights and aweights are specified, and ddof=0 will return
the simple average. See the notes for the details. The default value
is None.

fweights : array_like, int, optional
1-D array of integer freguency weights; the number of times each
observation vector should be repeated.

aweights : array_like, optional
1-D array of observation vector weights. These relative weights are
typically large for observations considered "important" and smaller for
observations considered less "important". If ddof=0 the array of
weights can be used to assign probabilities to observation vectors.

Returns
-------
out : ndarray
The covariance matrix of the variables.

--------
corrcoef : Normalized covariance matrix

Notes
-----
Assume that the observations are in the columns of the observation
array m and let f = fweights and a = aweights for brevity. The
steps to compute the weighted covariance are as follows::

w = f * a
v1 = np.sum(w)
v2 = np.sum(w * a)
m -= np.sum(m * w, axis=1, keepdims=True) / v1
cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor
v1 / (v1**2 - ddof * v2) goes over to 1 / (np.sum(f) - ddof)
as it should.

Examples
--------
Consider two variables, :math:x_0 and :math:x_1, which
correlate perfectly, but in opposite directions:

x = np.array([[0, 2], [1, 1], [2, 0]]).T
x
array([[0, 1, 2],
[2, 1, 0]])

Note how :math:x_0 increases while :math:x_1 decreases. The covariance
matrix shows this clearly:

np.cov(x)
array([[ 1., -1.],
[-1.,  1.]])

Note that element :math:C_{0,1}, which shows the correlation between
:math:x_0 and :math:x_1, is negative.

Further, note how x and y are combined:

x = [-2.1, -1,  4.3]
y = [3,  1.1,  0.12]
X = np.vstack((x,y))
print np.cov(X)
[[ 11.71        -4.286     ]
[ -4.286        2.14413333]]
print np.cov(x, y)
[[ 11.71        -4.286     ]
[ -4.286        2.14413333]]
print np.cov(x)
11.71

cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
Return the cross product of two (arrays of) vectors.

The cross product of a and b in :math:R^3 is a vector perpendicular
to both a and b.  If a and b are arrays of vectors, the vectors
are defined by the last axis of a and b by default, and these axes
can have dimensions 2 or 3.  Where the dimension of either a or b is
2, the third component of the input vector is assumed to be zero and the
cross product calculated accordingly.  In cases where both input vectors
have dimension 2, the z-component of the cross product is returned.

Parameters
----------
a : array_like
Components of the first vector(s).
b : array_like
Components of the second vector(s).
axisa : int, optional
Axis of a that defines the vector(s).  By default, the last axis.
axisb : int, optional
Axis of b that defines the vector(s).  By default, the last axis.
axisc : int, optional
Axis of c containing the cross product vector(s).  Ignored if
both input vectors have dimension 2, as the return is scalar.
By default, the last axis.
axis : int, optional
If defined, the axis of a, b and c that defines the vector(s)
and cross product(s).  Overrides axisa, axisb and axisc.

Returns
-------
c : ndarray
Vector cross product(s).

Raises
------
ValueError
When the dimension of the vector(s) in a and/or b does not
equal 2 or 3.

--------
inner : Inner product
outer : Outer product.
ix_ : Construct index arrays.

Notes
-----

Supports full broadcasting of the inputs.

Examples
--------
Vector cross-product.

x = [1, 2, 3]
y = [4, 5, 6]
np.cross(x, y)
array([-3,  6, -3])

One vector with dimension 2.

x = [1, 2]
y = [4, 5, 6]
np.cross(x, y)
array([12, -6, -3])

Equivalently:

x = [1, 2, 0]
y = [4, 5, 6]
np.cross(x, y)
array([12, -6, -3])

Both vectors with dimension 2.

x = [1,2]
y = [4,5]
np.cross(x, y)
-3

Multiple vector cross-products. Note that the direction of the cross
product vector is defined by the right-hand rule.

x = np.array([[1,2,3], [4,5,6]])
y = np.array([[4,5,6], [1,2,3]])
np.cross(x, y)
array([[-3,  6, -3],
[ 3, -6,  3]])

The orientation of c can be changed using the axisc keyword.

np.cross(x, y, axisc=0)
array([[-3,  3],
[ 6, -6],
[-3,  3]])

Change the vector definition of x and y using axisa and axisb.

x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
np.cross(x, y)
array([[ -6,  12,  -6],
[  0,   0,   0],
[  6, -12,   6]])
np.cross(x, y, axisa=0, axisb=0)
array([[-24,  48, -24],
[-30,  60, -30],
[-36,  72, -36]])

cumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative product is computed.  By default
the input is flattened.
dtype : dtype, optional
Type of the returned array, as well as of the accumulator in which
the elements are multiplied.  If *dtype* is not specified, it
defaults to the dtype of a, unless a has an integer dtype with
a precision less than that of the default platform integer.  In
that case, the default platform integer is used instead.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.

Returns
-------
cumprod : ndarray
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.

--------
numpy.doc.ufuncs : Section "Output arguments"

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
a = np.array([1,2,3])
np.cumprod(a) # intermediate results 1, 1*2
# total product 1*2*3 = 6
array([1, 2, 6])
a = np.array([[1, 2, 3], [4, 5, 6]])
np.cumprod(a, dtype=float) # specify type of output
array([   1.,    2.,    6.,   24.,  120.,  720.])

The cumulative product for each column (i.e., over the rows) of a:

np.cumprod(a, axis=0)
array([[ 1,  2,  3],
[ 4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

np.cumprod(a,axis=1)
array([[  1,   2,   6],
[  4,  20, 120]])

cumproduct(a, axis=None, dtype=None, out=None)
Return the cumulative product over the given axis.

--------
cumprod : equivalent function; see for details.

cumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened array.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed.  If dtype is not specified, it defaults
to the dtype of a, unless a has an integer dtype with a
precision less than that of the default platform integer.  In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See doc.ufuncs
(Section "Output arguments") for more details.

Returns
-------
cumsum_along_axis : ndarray.
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned. The
result has the same size as a, and the same shape as a if
axis is not None or a is a 1-d array.

--------
sum : Sum array elements.

trapz : Integration of array values using the composite trapezoidal rule.

diff :  Calculate the n-th order discrete difference along given axis.

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
a = np.array([[1,2,3], [4,5,6]])
a
array([[1, 2, 3],
[4, 5, 6]])
np.cumsum(a)
array([ 1,  3,  6, 10, 15, 21])
np.cumsum(a, dtype=float)     # specifies type of output value(s)
array([  1.,   3.,   6.,  10.,  15.,  21.])

np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns
array([[1, 2, 3],
[5, 7, 9]])
np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows
array([[ 1,  3,  6],
[ 4,  9, 15]])

datetime_as_string(...)

datetime_data(...)

delete(arr, obj, axis=None)
Return a new array with sub-arrays along an axis deleted. For a one
dimensional array, this returns those entries not returned by
arr[obj].

Parameters
----------
arr : array_like
Input array.
obj : slice, int or array of ints
Indicate which sub-arrays to remove.
axis : int, optional
The axis along which to delete the subarray defined by obj.
If axis is None, obj is applied to the flattened array.

Returns
-------
out : ndarray
A copy of arr with the elements specified by obj removed. Note
that delete does not occur in-place. If axis is None, out is
a flattened array.

--------
insert : Insert elements into an array.
append : Append elements at the end of an array.

Notes
-----
Often it is preferable to use a boolean mask. For example:

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further
use of mask.

Examples
--------
arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
arr
array([[ 1,  2,  3,  4],
[ 5,  6,  7,  8],
[ 9, 10, 11, 12]])
np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
[ 9, 10, 11, 12]])

np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
[ 6,  8],
[10, 12]])
np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

deprecate(*args, **kwargs)
Issues a DeprecationWarning, adds warning to old_name's
docstring, rebinds old_name.__name__ and returns the new
function object.

This function may also be used as a decorator.

Parameters
----------
func : function
The function to be deprecated.
old_name : str, optional
The name of the function to be deprecated. Default is None, in
which case the name of func is used.
new_name : str, optional
The new name for the function. Default is None, in which case the
deprecation message is that old_name is deprecated. If given, the
deprecation message is that old_name is deprecated and new_name
message : str, optional
Additional explanation of the deprecation.  Displayed in the
docstring after the warning.

Returns
-------
old_func : function
The deprecated function.

Examples
--------
Note that olduint returns a value after printing Deprecation
Warning:

olduint = np.deprecate(np.uint)
olduint(6)
/usr/lib/python2.5/site-packages/numpy/lib/utils.py:114:
DeprecationWarning: uint32 is deprecated
warnings.warn(str1, DeprecationWarning)
6

deprecate_with_doc lambda msg

diag(v, k=0)
Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy.diagonal if you use this
function to extract a diagonal and wish to write to the resulting array;
whether it returns a copy or a view depends on what version of numpy you
are using.

Parameters
----------
v : array_like
If v is a 2-D array, return a copy of its k-th diagonal.
If v is a 1-D array, return a 2-D array with v on the k-th
diagonal.
k : int, optional
Diagonal in question. The default is 0. Use k>0 for diagonals
above the main diagonal, and k<0 for diagonals below the main
diagonal.

Returns
-------
out : ndarray
The extracted diagonal or constructed diagonal array.

--------
diagonal : Return specified diagonals.
diagflat : Create a 2-D array with the flattened input as a diagonal.
trace : Sum along diagonals.
triu : Upper triangle of an array.
tril : Lower triangle of an array.

Examples
--------
x = np.arange(9).reshape((3,3))
x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])

np.diag(x)
array([0, 4, 8])
np.diag(x, k=1)
array([1, 5])
np.diag(x, k=-1)
array([3, 7])

np.diag(np.diag(x))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])

diag_indices(n, ndim=2)
Return the indices to access the main diagonal of an array.

This returns a tuple of indices that can be used to access the main
diagonal of an array a with a.ndim >= 2 dimensions and shape
(n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for
a.ndim > 2 this is the set of indices to access a[i, i, ..., i]
for i = [0..n-1].

Parameters
----------
n : int
The size, along each dimension, of the arrays for which the returned
indices can be used.

ndim : int, optional
The number of dimensions.

--------
diag_indices_from

Notes
-----

Examples
--------
Create a set of indices to access the diagonal of a (4, 4) array:

di = np.diag_indices(4)
di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
a = np.arange(16).reshape(4, 4)
a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11],
[12, 13, 14, 15]])
a[di] = 100
a
array([[100,   1,   2,   3],
[  4, 100,   6,   7],
[  8,   9, 100,  11],
[ 12,  13,  14, 100]])

Now, we create indices to manipulate a 3-D array:

d3 = np.diag_indices(2, 3)
d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

a = np.zeros((2, 2, 2), dtype=np.int)
a[d3] = 1
a
array([[[1, 0],
[0, 0]],
[[0, 0],
[0, 1]]])

diag_indices_from(arr)
Return the indices to access the main diagonal of an n-dimensional array.

See diag_indices for full details.

Parameters
----------
arr : array, at least 2-D

--------
diag_indices

Notes
-----

diagflat(v, k=0)
Create a two-dimensional array with the flattened input as a diagonal.

Parameters
----------
v : array_like
Input data, which is flattened and set as the k-th
diagonal of the output.
k : int, optional
Diagonal to set; 0, the default, corresponds to the "main" diagonal,
a positive (negative) k giving the number of the diagonal above
(below) the main.

Returns
-------
out : ndarray
The 2-D output array.

--------
diag : MATLAB work-alike for 1-D and 2-D arrays.
diagonal : Return specified diagonals.
trace : Sum along diagonals.

Examples
--------
np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

np.diagflat([1,2], 1)
array([[0, 1, 0],
[0, 0, 2],
[0, 0, 0]])

diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

If a is 2-D, returns the diagonal of a with the given offset,
i.e., the collection of elements of the form a[i, i+offset].  If
a has more than two dimensions, then the axes specified by axis1
and axis2 are used to determine the 2-D sub-array whose diagonal is
returned.  The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal
to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new,
independent array containing a copy of the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
but depending on this fact is deprecated. Writing to the resulting
array continues to work as it used to, but a FutureWarning is issued.

In NumPy 1.9 it returns a read-only view on the original array.
Attempting to write to the resulting array will produce an error.

In NumPy 1.10, it will return a read/write view and writing to the
returned array will alter your original array.  The returned array
will have the same type as the input array.

If you don't write to the array returned by this function, then you can
just ignore all of the above.

If you depend on the current behavior, then we suggest copying the
returned array explicitly, i.e., use np.diagonal(a).copy() instead
of just np.diagonal(a). This will work with both past and future
versions of NumPy.

Parameters
----------
a : array_like
Array from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal.  Can be positive or
negative.  Defaults to main diagonal (0).
axis1 : int, optional
Axis to be used as the first axis of the 2-D sub-arrays from which
the diagonals should be taken.  Defaults to first axis (0).
axis2 : int, optional
Axis to be used as the second axis of the 2-D sub-arrays from
which the diagonals should be taken. Defaults to second axis (1).

Returns
-------
array_of_diagonals : ndarray
If a is 2-D and not a matrix, a 1-D array of the same type as a
containing the diagonal is returned. If a is a matrix, a 1-D
array containing the diagonal is returned in order to maintain
backward compatibility.  If the dimension of a is greater than
two, then an array of diagonals is returned, "packed" from
left-most dimension to right-most (e.g., if a is 3-D, then the
diagonals are "packed" along rows).

Raises
------
ValueError
If the dimension of a is less than 2.

--------
diag : MATLAB work-a-like for 1-D and 2-D arrays.
diagflat : Create diagonal arrays.
trace : Sum along diagonals.

Examples
--------
a = np.arange(4).reshape(2,2)
a
array([[0, 1],
[2, 3]])
a.diagonal()
array([0, 3])
a.diagonal(1)
array()

A 3-D example:

a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
a.diagonal(0, # Main diagonals of two arrays created by skipping
0, # across the outer(left)-most axis last and
1) # the "middle" (row) axis first.
array([[0, 6],
[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each
corresponds to fixing the right-most (column) axis, and that the
diagonals are "packed" in rows.

a[:,:,0] # main diagonal is [0 6]
array([[0, 2],
[4, 6]])
a[:,:,1] # main diagonal is [1 7]
array([[1, 3],
[5, 7]])

diff(a, n=1, axis=-1)
Calculate the n-th order discrete difference along given axis.

The first order difference is given by out[n] = a[n+1] - a[n] along
the given axis, higher order differences are calculated by using diff
recursively.

Parameters
----------
a : array_like
Input array
n : int, optional
The number of times values are differenced.
axis : int, optional
The axis along which the difference is taken, default is the last axis.

Returns
-------
diff : ndarray
The n order differences. The shape of the output is the same as a
except along axis where the dimension is smaller by n.

--------

Examples
--------
x = np.array([1, 2, 4, 7, 0])
np.diff(x)
array([ 1,  2,  3, -7])
np.diff(x, n=2)
array([  1,   1, -10])

x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
np.diff(x)
array([[2, 3, 4],
[5, 1, 2]])
np.diff(x, axis=0)
array([[-1,  2,  0, -2]])

digitize(...)
digitize(x, bins, right=False)

Return the indices of the bins to which each value in input array belongs.

Each index i returned is such that bins[i-1] <= x < bins[i] if
bins is monotonically increasing, or bins[i-1] > x >= bins[i] if
bins is monotonically decreasing. If values in x are beyond the
bounds of bins, 0 or len(bins) is returned as appropriate. If right
is True, then the right bin is closed so that the index i is such
that bins[i-1] < x <= bins[i] or bins[i-1] >= x > bins[i] if bins
is monotonically increasing or decreasing, respectively.

Parameters
----------
x : array_like
Input array to be binned. Prior to Numpy 1.10.0, this array had to
be 1-dimensional, but can now have any shape.
bins : array_like
Array of bins. It has to be 1-dimensional and monotonic.
right : bool, optional
Indicating whether the intervals include the right or the left bin
edge. Default behavior is (right==False) indicating that the interval
does not include the right edge. The left bin end is open in this
case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

Returns
-------
out : ndarray of ints
Output array of indices, of same shape as x.

Raises
------
ValueError
If bins is not monotonic.
TypeError
If the type of the input is complex.

--------
bincount, histogram, unique

Notes
-----
If values in x are such that they fall outside the bin range,
attempting to index bins with the indices that digitize returns
will result in an IndexError.

np.digitize is  implemented in terms of np.searchsorted. This means
that a binary search is used to bin the values, which scales much better
for larger number of bins than the previous linear search. It also removes
the requirement for the input array to be 1-dimensional.

Examples
--------
x = np.array([0.2, 6.4, 3.0, 1.6])
bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
inds = np.digitize(x, bins)
inds
array([1, 4, 3, 2])
for n in range(x.size):
print bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
bins = np.array([0, 5, 10, 15, 20])
np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])

disp(mesg, device=None, linefeed=True)
Display a message on a device.

Parameters
----------
mesg : str
Message to display.
device : object
Device to write message. If None, defaults to sys.stdout which is
very similar to print. device needs to have write() and
flush() methods.
linefeed : bool, optional
Option whether to print a line feed or not. Defaults to True.

Raises
------
AttributeError
If device does not have a write() or flush() method.

Examples
--------
Besides sys.stdout, a file-like object can also be used as it has
both required methods:

from StringIO import StringIO
buf = StringIO()
np.disp('"Display" in a file', device=buf)
buf.getvalue()
'"Display" in a file\n'

dot(...)
dot(a, b, out=None)

Dot product of two arrays.

For 2-D arrays it is equivalent to matrix multiplication, and for 1-D
arrays to inner product of vectors (without complex conjugation). For
N dimensions it is a sum product over the last axis of a and
the second-to-last of b::

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters
----------
a : array_like
First argument.
b : array_like
Second argument.
out : ndarray, optional
Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be
C-contiguous, and its dtype must be the dtype that would be returned
for dot(a,b). This is a performance feature. Therefore, if these
conditions are not met, an exception is raised, instead of attempting
to be flexible.

Returns
-------
output : ndarray
Returns the dot product of a and b.  If a and b are both
scalars or both 1-D arrays then a scalar is returned; otherwise
an array is returned.
If out is given, then it is returned.

Raises
------
ValueError
If the last dimension of a is not the same size as
the second-to-last dimension of b.

--------
vdot : Complex-conjugating dot product.
tensordot : Sum products over arbitrary axes.
einsum : Einstein summation convention.
matmul : '@' operator as method with out parameter.

Examples
--------
np.dot(3, 4)
12

Neither argument is complex-conjugated:

np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

a = [[1, 0], [0, 1]]
b = [[4, 1], [2, 2]]
np.dot(a, b)
array([[4, 1],
[2, 2]])

a = np.arange(3*4*5*6).reshape((3,4,5,6))
b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
np.dot(a, b)[2,3,2,1,2,2]
499128
sum(a[2,3,2,:] * b[1,2,:,2])
499128

dsplit(ary, indices_or_sections)
Split array into multiple sub-arrays along the 3rd axis (depth).

Please refer to the split documentation.  dsplit is equivalent
to split with axis=2, the array is always split along the third
axis provided the array dimension is greater than or equal to 3.

--------
split : Split an array into multiple sub-arrays of equal size.

Examples
--------
x = np.arange(16.0).reshape(2, 2, 4)
x
array([[[  0.,   1.,   2.,   3.],
[  4.,   5.,   6.,   7.]],
[[  8.,   9.,  10.,  11.],
[ 12.,  13.,  14.,  15.]]])
np.dsplit(x, 2)
[array([[[  0.,   1.],
[  4.,   5.]],
[[  8.,   9.],
[ 12.,  13.]]]),
array([[[  2.,   3.],
[  6.,   7.]],
[[ 10.,  11.],
[ 14.,  15.]]])]
np.dsplit(x, np.array([3, 6]))
[array([[[  0.,   1.,   2.],
[  4.,   5.,   6.]],
[[  8.,   9.,  10.],
[ 12.,  13.,  14.]]]),
array([[[  3.],
[  7.]],
[[ 11.],
[ 15.]]]),
array([], dtype=float64)]

dstack(tup)
Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by dsplit.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

Parameters
----------
tup : sequence of arrays
Arrays to stack. All of them must have the same shape along all
but the third axis.

Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.

--------
stack : Join a sequence of arrays along a new axis.
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split array along third axis.

Notes
-----
Equivalent to np.concatenate(tup, axis=2).

Examples
--------
a = np.array((1,2,3))
b = np.array((2,3,4))
np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])

a = np.array([,,])
b = np.array([,,])
np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])

ediff1d(ary, to_end=None, to_begin=None)
The differences between consecutive elements of an array.

Parameters
----------
ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.

Returns
-------
ediff1d : ndarray
The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

--------

Notes
-----
if the to_begin and/or to_end parameters are used.

Examples
--------
x = np.array([1, 2, 4, 7, 0])
np.ediff1d(x)
array([ 1,  2,  3, -7])

np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99,   1,   2,   3,  -7,  88,  99])

The returned array is always 1D.

y = [[1, 2, 4], [1, 6, 24]]
np.ediff1d(y)
array([ 1,  2, -3,  5, 18])

einsum(...)
einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe')

Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional
array operations can be represented in a simple fashion.  This function
provides a way compute such summations. The best way to understand this
function is to try the examples below, which show how many common NumPy
functions can be implemented as calls to einsum.

Parameters
----------
subscripts : str
Specifies the subscripts for summation.
operands : list of array_like
These are the arrays for the operation.
out : ndarray, optional
If provided, the calculation is done into this array.
dtype : data-type, optional
If provided, forces the calculation to use the data type specified.
Note that you may have to also give a more liberal casting
parameter to allow the conversions.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the output. 'C' means it should
be C contiguous. 'F' means it should be Fortran contiguous,
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
'K' means it should be as close to the layout as the inputs as
is possible, including arbitrarily permuted axes.
Default is 'K'.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur.  Setting this to
'unsafe' is not recommended, as it can adversely affect accumulations.

* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.

Returns
-------
output : ndarray
The calculation based on the Einstein summation convention.

--------
dot, inner, outer, tensordot

Notes
-----

The subscripts string is a comma-separated list of subscript labels,
where each label refers to a dimension of the corresponding operand.
Repeated subscripts labels in one operand take the diagonal.  For example,
np.einsum('ii', a) is equivalent to np.trace(a).

Whenever a label is repeated, it is summed, so np.einsum('i,i', a, b)
is equivalent to np.inner(a,b).  If a label appears only once,
it is not summed, so np.einsum('i', a) produces a view of a
with no changes.

The order of labels in the output is by default alphabetical.  This
means that np.einsum('ij', a) doesn't affect a 2D array, while
np.einsum('ji', a) takes its transpose.

The output can be controlled by specifying output subscript labels
as well.  This specifies the label order, and allows summing to
be disallowed or forced when desired.  The call np.einsum('i->', a)
is like np.sum(a, axis=-1), and np.einsum('ii->i', a)
is like np.diag(a).  The difference is that einsum does not

To enable and control broadcasting, use an ellipsis.  Default
to the left of each term, like np.einsum('...ii->...i', a).
To take the trace along the first and last axes,
you can do np.einsum('i...i', a), or to do a matrix-matrix
product with the left-most indices instead of rightmost, you can do
np.einsum('ij...,jk...->ik...', a, b).

When there is only one operand, no axes are summed, and no output
parameter is provided, a view into the operand is returned instead
of a new array.  Thus, taking the diagonal as np.einsum('ii->i', a)
produces a view.

An alternative way to provide the subscripts and operands is as
einsum(op0, sublist0, op1, sublist1, ..., [sublistout]). The examples
below have corresponding einsum calls with the two parameter methods.

Views returned from einsum are now writeable whenever the input array
is writeable. For example, np.einsum('ijk...->kji...', a) will now
have the same effect as np.swapaxes(a, 0, 2) and
np.einsum('ii->i', a) will return a writeable view of the diagonal
of a 2D array.

Examples
--------
a = np.arange(25).reshape(5,5)
b = np.arange(5)
c = np.arange(6).reshape(2,3)

np.einsum('ii', a)
60
np.einsum(a, [0,0])
60
np.trace(a)
60

np.einsum('ii->i', a)
array([ 0,  6, 12, 18, 24])
np.einsum(a, [0,0], )
array([ 0,  6, 12, 18, 24])
np.diag(a)
array([ 0,  6, 12, 18, 24])

np.einsum('ij,j', a, b)
array([ 30,  80, 130, 180, 230])
np.einsum(a, [0,1], b, )
array([ 30,  80, 130, 180, 230])
np.dot(a, b)
array([ 30,  80, 130, 180, 230])
np.einsum('...j,j', a, b)
array([ 30,  80, 130, 180, 230])

np.einsum('ji', c)
array([[0, 3],
[1, 4],
[2, 5]])
np.einsum(c, [1,0])
array([[0, 3],
[1, 4],
[2, 5]])
c.T
array([[0, 3],
[1, 4],
[2, 5]])

np.einsum('..., ...', 3, c)
array([[ 0,  3,  6],
[ 9, 12, 15]])
np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[ 0,  3,  6],
[ 9, 12, 15]])
np.multiply(3, c)
array([[ 0,  3,  6],
[ 9, 12, 15]])

np.einsum('i,i', b, b)
30
np.einsum(b, , b, )
30
np.inner(b,b)
30

np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
np.einsum(np.arange(2)+1, , b, )
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])
np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8]])

np.einsum('i...->...', a)
array([50, 55, 60, 65, 70])
np.einsum(a, [0,Ellipsis], [Ellipsis])
array([50, 55, 60, 65, 70])
np.sum(a, axis=0)
array([50, 55, 60, 65, 70])

a = np.arange(60.).reshape(3,4,5)
b = np.arange(24.).reshape(4,3,2)
np.einsum('ijk,jil->kl', a, b)
array([[ 4400.,  4730.],
[ 4532.,  4874.],
[ 4664.,  5018.],
[ 4796.,  5162.],
[ 4928.,  5306.]])
np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[ 4400.,  4730.],
[ 4532.,  4874.],
[ 4664.,  5018.],
[ 4796.,  5162.],
[ 4928.,  5306.]])
np.tensordot(a,b, axes=([1,0],[0,1]))
array([[ 4400.,  4730.],
[ 4532.,  4874.],
[ 4664.,  5018.],
[ 4796.,  5162.],
[ 4928.,  5306.]])

a = np.arange(6).reshape((3,2))
b = np.arange(12).reshape((4,3))
np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])
np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],
[13, 40, 67, 94]])

# since version 1.10.0
a = np.zeros((3, 3))
np.einsum('ii->i', a)[:] = 1
a
array([[ 1.,  0.,  0.],
[ 0.,  1.,  0.],
[ 0.,  0.,  1.]])

empty(...)
empty(shape, dtype=float, order='C')

Return a new array of given shape and type, without initializing entries.

Parameters
----------
shape : int or tuple of int
Shape of the empty array
dtype : data-type, optional
Desired output data-type.
order : {'C', 'F'}, optional
Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.

Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the given
shape, dtype, and order.

--------
empty_like, zeros, ones

Notes
-----
empty, unlike zeros, does not set the array values to zero,
and may therefore be marginally faster.  On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples
--------
np.empty([2, 2])
array([[ -9.74499359e+001,   6.69583040e-309],
[  2.13182611e-314,   3.06959433e-309]])         #random

np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],
[  496041986,    19249760]])                     #random

empty_like(...)
empty_like(a, dtype=None, order='K', subok=True)

Return a new array with the same shape and type as a given array.

Parameters
----------
a : array_like
The shape and data-type of a define these same attributes of the
returned array.
dtype : data-type, optional
Overrides the data type of the result.

order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if a is Fortran contiguous,
'C' otherwise. 'K' means match the layout of a as closely
as possible.

subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.

Returns
-------
out : ndarray
Array of uninitialized (arbitrary) data with the same
shape and type as a.

--------
ones_like : Return an array of ones with shape and type of input.
zeros_like : Return an array of zeros with shape and type of input.
empty : Return a new uninitialized array.
ones : Return a new array setting values to one.
zeros : Return a new array setting values to zero.

Notes
-----
This function does *not* initialize the returned array; to do that use
zeros_like or ones_like instead.  It may be marginally faster than
the functions that do set the array values.

Examples
--------
a = ([1,2,3], [4,5,6])                         # a is array-like
np.empty_like(a)
array([[-1073741821, -1073741821,           3],    #random
[          0,           0, -1073741821]])
a = np.array([[1., 2., 3.],[4.,5.,6.]])
np.empty_like(a)
array([[ -2.00000715e+000,   1.48219694e-323,  -2.00000572e+000],#random
[  4.38791518e-305,  -2.00000715e+000,   4.17269252e-309]])

expand_dims(a, axis)
Expand the shape of an array.

Insert a new axis, corresponding to a given position in the array shape.

Parameters
----------
a : array_like
Input array.
axis : int
Position (amongst axes) where new axis is to be inserted.

Returns
-------
res : ndarray
Output array. The number of dimensions is one greater than that of
the input array.

--------
doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples
--------
x = np.array([1,2])
x.shape
(2,)

The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

y = np.expand_dims(x, axis=0)
y
array([[1, 2]])
y.shape
(1, 2)

y = np.expand_dims(x, axis=1)  # Equivalent to x[:,newaxis]
y
array([,
])
y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis.  These
are the same objects:

np.newaxis is None
True

extract(condition, arr)
Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)).  If
condition is boolean np.extract is equivalent to arr[condition].

Note that place does the exact opposite of extract.

Parameters
----------
condition : array_like
An array whose nonzero or True entries indicate the elements of arr
to extract.
arr : array_like
Input array of the same size as condition.

Returns
-------
extract : ndarray
Rank 1 array of values from arr where condition is True.

--------
take, put, copyto, compress, place

Examples
--------
arr = np.arange(12).reshape((3, 4))
arr
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
condition = np.mod(arr, 3)==0
condition
array([[ True, False, False,  True],
[False, False,  True, False],
[False,  True, False, False]], dtype=bool)
np.extract(condition, arr)
array([0, 3, 6, 9])

If condition is boolean:

arr[condition]
array([0, 3, 6, 9])

eye(N, M=None, k=0, dtype=<type 'float'>)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters
----------
N : int
Number of rows in the output.
M : int, optional
Number of columns in the output. If None, defaults to N.
k : int, optional
Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal, and a negative value
to a lower diagonal.
dtype : data-type, optional
Data-type of the returned array.

Returns
-------
I : ndarray of shape (N,M)
An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

--------
identity : (almost) equivalent function
diag : diagonal 2-D array from a 1-D array specified by the user.

Examples
--------
np.eye(2, dtype=int)
array([[1, 0],
[0, 1]])
np.eye(3, k=1)
array([[ 0.,  1.,  0.],
[ 0.,  0.,  1.],
[ 0.,  0.,  0.]])

fastCopyAndTranspose = _fastCopyAndTranspose(...)
_fastCopyAndTranspose(a)

fill_diagonal(a, val, wrap=False)
Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of
locations with indices a[i, i, ..., i] all identical. This function
modifies the input array in-place, it does not return a value.

Parameters
----------
a : array, at least 2-D.
Array whose diagonal is to be filled, it gets modified in-place.

val : scalar
Value to be written on the diagonal, its type must be compatible with
that of the array a.

wrap : bool
For tall matrices in NumPy version up to 1.6.2, the
diagonal "wrapped" after N columns. You can have this behavior
with this option. This affect only tall matrices.

--------
diag_indices, diag_indices_from

Notes
-----

This functionality can be obtained via diag_indices, but internally
this version uses a much faster implementation that never constructs the
indices and uses simple slicing.

Examples
--------
a = np.zeros((3, 3), int)
np.fill_diagonal(a, 5)
a
array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])

The same function can operate on a 4-D array:

a = np.zeros((3, 3, 3, 3), int)
np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

a[0, 0]
array([[4, 0, 0],
[0, 0, 0],
[0, 0, 0]])
a[1, 1]
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 0]])
a[2, 2]
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 4]])

The wrap option affects only tall matrices:

# tall matrices no wrap
a = np.zeros((5, 3),int)
fill_diagonal(a, 4)
a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])

# tall matrices wrap
a = np.zeros((5, 3),int)
fill_diagonal(a, 4, wrap=True)
a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])

# wide matrices
a = np.zeros((3, 5),int)
fill_diagonal(a, 4, wrap=True)
a
array([[4, 0, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])

find_common_type(array_types, scalar_types)
Determine common type following standard coercion rules.

Parameters
----------
array_types : sequence
A list of dtypes or dtype convertible objects representing arrays.
scalar_types : sequence
A list of dtypes or dtype convertible objects representing scalars.

Returns
-------
datatype : dtype
The common data type, which is the maximum of array_types ignoring
scalar_types, unless the maximum of scalar_types is of a
different kind (dtype.kind). If the kind is not understood, then
None is returned.

--------
dtype, common_type, can_cast, mintypecode

Examples
--------
np.find_common_type([], [np.int64, np.float32, np.complex])
dtype('complex128')
np.find_common_type([np.int64, np.float32], [])
dtype('float64')

The standard casting rules ensure that a scalar cannot up-cast an
array unless the scalar is of a fundamentally different kind of data
(i.e. under a different hierarchy in the data type hierarchy) then
the array:

np.find_common_type([np.float32], [np.int64, np.float64])
dtype('float32')

Complex is of a different type, so it up-casts the float in the
array_types argument:

np.find_common_type([np.float32], [np.complex])
dtype('complex128')

Type specifier strings are convertible to dtypes and can therefore

np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
dtype('complex128')

fix(x, y=None)
Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.

Parameters
----------
x : array_like
An array of floats to be rounded
y : ndarray, optional
Output array

Returns
-------
out : ndarray of floats
The array of rounded numbers

--------
trunc, floor, ceil
around : Round to given number of decimals

Examples
--------
np.fix(3.14)
3.0
np.fix(3)
3.0
np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2.,  2., -2., -2.])

flatnonzero(a)
Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero().

Parameters
----------
a : ndarray
Input array.

Returns
-------
res : ndarray
Output array, containing the indices of the elements of a.ravel()
that are non-zero.

--------
nonzero : Return the indices of the non-zero elements of the input array.
ravel : Return a 1-D array containing the elements of the input array.

Examples
--------
x = np.arange(-2, 3)
x
array([-2, -1,  0,  1,  2])
np.flatnonzero(x)
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract
these elements:

x.ravel()[np.flatnonzero(x)]
array([-2, -1,  1,  2])

fliplr(m)
Flip array in the left/right direction.

Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.

Parameters
----------
m : array_like
Input array, must be at least 2-D.

Returns
-------
f : ndarray
A view of m with the columns reversed.  Since a view
is returned, this operation is :math:\mathcal O(1).

--------
flipud : Flip array in the up/down direction.
rot90 : Rotate array counterclockwise.

Notes
-----
Equivalent to A[:,::-1]. Requires the array to be at least 2-D.

Examples
--------
A = np.diag([1.,2.,3.])
A
array([[ 1.,  0.,  0.],
[ 0.,  2.,  0.],
[ 0.,  0.,  3.]])
np.fliplr(A)
array([[ 0.,  0.,  1.],
[ 0.,  2.,  0.],
[ 3.,  0.,  0.]])

A = np.random.randn(2,3,5)
np.all(np.fliplr(A)==A[:,::-1,...])
True

flipud(m)
Flip array in the up/down direction.

Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.

Parameters
----------
m : array_like
Input array.

Returns
-------
out : array_like
A view of m with the rows reversed.  Since a view is
returned, this operation is :math:\mathcal O(1).

--------
fliplr : Flip array in the left/right direction.
rot90 : Rotate array counterclockwise.

Notes
-----
Equivalent to A[::-1,...].
Does not require the array to be two-dimensional.

Examples
--------
A = np.diag([1.0, 2, 3])
A
array([[ 1.,  0.,  0.],
[ 0.,  2.,  0.],
[ 0.,  0.,  3.]])
np.flipud(A)
array([[ 0.,  0.,  3.],
[ 0.,  2.,  0.],
[ 1.,  0.,  0.]])

A = np.random.randn(2,3,5)
np.all(np.flipud(A)==A[::-1,...])
True

np.flipud([1,2])
array([2, 1])

frombuffer(...)
frombuffer(buffer, dtype=float, count=-1, offset=0)

Interpret a buffer as a 1-dimensional array.

Parameters
----------
buffer : buffer_like
An object that exposes the buffer interface.
dtype : data-type, optional
Data-type of the returned array; default: float.
count : int, optional
Number of items to read. -1 means all data in the buffer.
offset : int, optional
Start reading the buffer from this offset; default: 0.

Notes
-----
If the buffer has data that is not in machine byte-order, this should
be specified as part of the data-type, e.g.::

dt = np.dtype(int)
dt = dt.newbyteorder('>')
np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be
interpreted correctly.

Examples
--------
s = 'hello world'
np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
dtype='|S1')

fromfile(...)
fromfile(file, dtype=float, count=-1, sep='')

Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type,
as well as parsing simply formatted text files.  Data written using the
tofile method can be read using this function.

Parameters
----------
file : file or str
Open file object or filename.
dtype : data-type
Data type of the returned array.
For binary files, it is used to determine the size and byte-order
of the items in the file.
count : int
Number of items to read. -1 means all items (i.e., the complete
file).
sep : str
Separator between items if file is a text file.
Empty ("") separator means the file should be treated as binary.
Spaces (" ") in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one
whitespace.

--------
ndarray.tofile

Notes
-----
Do not rely on the combination of tofile and fromfile for
data storage, as the binary files generated are are not platform
independent.  In particular, no byte-order or data-type information is
saved.  Data can be stored in the platform independent .npy format
using save and load instead.

Examples
--------
Construct an ndarray:

dt = np.dtype([('time', [('min', int), ('sec', int)]),
('temp', float)])
x = np.zeros((1,), dtype=dt)
x['time']['min'] = 10; x['temp'] = 98.25
x
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

Save the raw data to disk:

import os
fname = os.tmpnam()
x.tofile(fname)

Read the raw data from disk:

np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

The recommended way to store and load data:

np.save(fname, x)
array([((10, 0), 98.25)],
dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

fromfunction(function, shape, **kwargs)
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn(x, y, z) at
coordinate (x, y, z).

Parameters
----------
function : callable
The function is called with N parameters, where N is the rank of
shape.  Each parameter represents the coordinates of the array
varying along a specific axis.  For example, if shape
were (2, 2), then the parameters in turn be (0, 0), (0, 1),
(1, 0), (1, 1).
shape : (N,) tuple of ints
Shape of the output array, which also determines the shape of
the coordinate arrays passed to function.
dtype : data-type, optional
Data-type of the coordinate arrays passed to function.
By default, dtype is float.

Returns
-------
fromfunction : any
The result of the call to function is passed back directly.
Therefore the shape of fromfunction is completely determined by
function.  If function returns a scalar value, the shape of
fromfunction would match the shape parameter.

--------
indices, meshgrid

Notes
-----
Keywords other than dtype are passed to function.

Examples
--------
np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],
[False,  True, False],
[False, False,  True]], dtype=bool)

np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])

fromiter(...)
fromiter(iterable, dtype, count=-1)

Create a new 1-dimensional array from an iterable object.

Parameters
----------
iterable : iterable object
An iterable object providing data for the array.
dtype : data-type
The data-type of the returned array.
count : int, optional
The number of items to read from *iterable*.  The default is -1,
which means all data is read.

Returns
-------
out : ndarray
The output array.

Notes
-----
Specify count to improve performance.  It allows fromiter to
pre-allocate the output array, instead of resizing it on demand.

Examples
--------
iterable = (x*x for x in range(5))
np.fromiter(iterable, np.float)
array([  0.,   1.,   4.,   9.,  16.])

frompyfunc(...)
frompyfunc(func, nin, nout)

Takes an arbitrary Python function and returns a Numpy ufunc.

Can be used, for example, to add broadcasting to a built-in Python
function (see Examples section).

Parameters
----------
func : Python function object
An arbitrary Python function.
nin : int
The number of input arguments.
nout : int
The number of objects returned by func.

Returns
-------
out : ufunc
Returns a Numpy universal function (ufunc) object.

Notes
-----
The returned ufunc always returns PyObject arrays.

Examples
--------
Use frompyfunc to add broadcasting to the Python function oct:

oct_array = np.frompyfunc(oct, 1, 1)
oct_array(np.array((10, 30, 100)))
array([012, 036, 0144], dtype=object)
np.array((oct(10), oct(30), oct(100))) # for comparison
array(['012', '036', '0144'],
dtype='|S4')

fromregex(file, regexp, dtype)
Construct an array from a text file, using regular expression parsing.

The returned array is always a structured array, and is constructed from
all matches of the regular expression in the file. Groups in the regular
expression are converted to fields of the structured array.

Parameters
----------
file : str or file
File name or file object to read.
regexp : str or regexp
Regular expression used to parse the file.
Groups in the regular expression correspond to fields in the dtype.
dtype : dtype or list of dtypes
Dtype for the structured array.

Returns
-------
output : ndarray
The output array, containing the part of the content of file that
was matched by regexp. output is always a structured array.

Raises
------
TypeError
When dtype is not a valid dtype for a structured array.

--------

Notes
-----
Dtypes for structured arrays can be specified in several forms, but all
forms specify at least the data type and field name. For details see
doc.structured_arrays.

Examples
--------
f = open('test.dat', 'w')
f.write("1312 foo\n1534  bar\n444   qux")
f.close()

regexp = r"(\d+)\s+(...)"  # match [digits, whitespace, anything]
output = np.fromregex('test.dat', regexp,
[('num', np.int64), ('key', 'S3')])
output
array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
dtype=[('num', '<i8'), ('key', '|S3')])
output['num']
array([1312, 1534,  444], dtype=int64)

fromstring(...)
fromstring(string, dtype=float, count=-1, sep='')

A new 1-D array initialized from raw binary or text data in a string.

Parameters
----------
string : str
A string containing the data.
dtype : data-type, optional
The data type of the array; default: float.  For binary input data,
the data must be in exactly this format.
count : int, optional
Read this number of dtype elements from the data.  If this is
negative (the default), the count will be determined from the
length of the data.
sep : str, optional
If not provided or, equivalently, the empty string, the data will
be interpreted as binary data; otherwise, as ASCII text with
decimal numbers.  Also in this latter case, this argument is
interpreted as the string separating numbers in the data; extra
whitespace between elements is also ignored.

Returns
-------
arr : ndarray
The constructed array.

Raises
------
ValueError
If the string is not the correct size to satisfy the requested
dtype and count.

--------
frombuffer, fromfile, fromiter

Examples
--------
np.fromstring('\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
np.fromstring('\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

full(shape, fill_value, dtype=None, order='C')
Return a new array of given shape and type, filled with fill_value.

Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., (2, 3) or 2.
fill_value : scalar
Fill value.
dtype : data-type, optional
The desired data-type for the array, e.g., np.int8.  Default
is float, but will change to np.array(fill_value).dtype in a
future release.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

Returns
-------
out : ndarray
Array of fill_value with the given shape, dtype, and order.

--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
full_like : Fill an array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.

Examples
--------
np.full((2, 2), np.inf)
array([[ inf,  inf],
[ inf,  inf]])
np.full((2, 2), 10, dtype=np.int)
array([[10, 10],
[10, 10]])

full_like(a, fill_value, dtype=None, order='K', subok=True)
Return a full array with the same shape and type as a given array.

Parameters
----------
a : array_like
The shape and data-type of a define these same attributes of
the returned array.
fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if a is Fortran contiguous,
'C' otherwise. 'K' means match the layout of a as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.

Returns
-------
out : ndarray
Array of fill_value with the same shape and type as a.

--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
full : Fill a new array.

Examples
--------
x = np.arange(6, dtype=np.int)
np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
np.full_like(x, 0.1, dtype=np.double)
array([ 0.1,  0.1,  0.1,  0.1,  0.1,  0.1])
np.full_like(x, np.nan, dtype=np.double)
array([ nan,  nan,  nan,  nan,  nan,  nan])

y = np.arange(6, dtype=np.double)
np.full_like(y, 0.1)
array([ 0.1,  0.1,  0.1,  0.1,  0.1,  0.1])

fv(rate, nper, pmt, pv, when='end')
Compute the future value.

Given:
* a present value, pv
* an interest rate compounded once per period, of which
there are
* nper total
* a (fixed) payment, pmt, paid either
* at the beginning (when = {'begin', 1}) or the end
(when = {'end', 0}) of each period

Return:
the value at the end of the nper periods

Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
Number of compounding periods
pmt : scalar or array_like of shape(M, )
Payment
pv : scalar or array_like of shape(M, )
Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.

Returns
-------
out : ndarray
Future values.  If all input is scalar, returns a scalar float.  If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.

Notes
-----
The future value is computed by solving the equation::

fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when rate == 0::

fv + pv + pmt * nper == 0

References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

Examples
--------
What is the future value after 10 years of saving $100 now, with an additional monthly savings of$100.  Assume the interest rate is
5% (annually) compounded monthly?

np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not
available today).  Thus, saving $100 a month at 5% annual interest leads to$15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape.  Let's
compare different interest rates from the example above.

a = np.array((0.05, 0.06, 0.07))/12
np.fv(a, 10*12, -100, -100)
array([ 15692.92889434,  16569.87435405,  17509.44688102])

genfromtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None)
Load data from a text file, with missing values handled as specified.

Each line past the first skip_header lines is split at the delimiter
character, and characters following the comments character are discarded.

Parameters
----------
fname : file or str
File, filename, or generator to read.  If the filename extension is
.gz or .bz2, the file is first decompressed. Note that
generators must return byte strings in Python 3k.
dtype : dtype, optional
Data type of the resulting array.
If None, the dtypes will be determined by the contents of each
column, individually.
The character used to indicate the start of a comment.
All the characters occurring on a line after a comment are discarded
delimiter : str, int, or sequence, optional
The string used to separate values.  By default, any consecutive
whitespaces act as delimiter.  An integer or sequence of integers
can also be provided as width(s) of each field.
skiprows : int, optional
skiprows was removed in numpy 1.10. Please use skip_header instead.
The number of lines to skip at the beginning of the file.
skip_footer : int, optional
The number of lines to skip at the end of the file.
converters : variable, optional
The set of functions that convert the data of a column to a value.
The converters can also be used to provide a default value
for missing data: converters = {3: lambda s: float(s or 0)}.
missing : variable, optional
missing was removed in numpy 1.10. Please use missing_values
missing_values : variable, optional
The set of strings corresponding to missing data.
filling_values : variable, optional
The set of values to be used as default when the data are missing.
usecols : sequence, optional
Which columns to read, with 0 being the first.  For example,
usecols = (1, 4, 5) will extract the 2nd, 5th and 6th columns.
names : {None, True, str, sequence}, optional
If names is True, the field names are read from the first valid line
after the first skip_header lines.
If names is a sequence or a single-string of comma-separated names,
the names will be used to define the field names in a structured dtype.
If names is None, the names of the dtype fields will be used, if any.
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default list
['return','file','print']. Excluded names are appended an underscore:
for example, file would become file_.
deletechars : str, optional
A string combining invalid characters that must be deleted from the
names.
defaultfmt : str, optional
A format used to define default field names, such as "f%i" or "f_%02i".
autostrip : bool, optional
Whether to automatically strip white spaces from the variables.
replace_space : char, optional
Character(s) used in replacement of white spaces in the variables
names. By default, use a '_'.
case_sensitive : {True, False, 'upper', 'lower'}, optional
If True, field names are case sensitive.
If False or 'upper', field names are converted to upper case.
If 'lower', field names are converted to lower case.
unpack : bool, optional
If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt(...)
If True, return a masked array.
If False, return a regular array.
loose : bool, optional
If True, do not raise errors for invalid values.
invalid_raise : bool, optional
If True, an exception is raised if an inconsistency is detected in the
number of columns.
If False, a warning is emitted and the offending lines are skipped.
max_rows : int,  optional
The maximum number of rows to read. Must not be used with skip_footer
at the same time.  If given, the value must be at least 1. Default is

Returns
-------
out : ndarray
Data read from the text file. If usemask is True, this is a

--------
numpy.loadtxt : equivalent function when no data is missing.

Notes
-----
* When spaces are used as delimiters, or when no delimiter has been given
as input, there should not be any missing data between two fields.
* When the variables are named (either by a flexible dtype or with names,
there must not be any header in the file (else a ValueError
exception is raised).
* Individual values are not stripped of spaces by default.
When using a custom converter, make sure the function does remove spaces.

References
----------
..  Numpy User Guide, section I/O with Numpy
<http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>_.

Examples
---------
from io import StringIO
import numpy as np

Comma delimited file with mixed dtype

s = StringIO("1,1.3,abcde")
data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
('mystring','S5')], delimiter=",")
data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Using dtype = None

s.seek(0) # needed for StringIO example only
data = np.genfromtxt(s, dtype=None,
names = ['myint','myfloat','mystring'], delimiter=",")
data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

Specifying dtype and names

s.seek(0)
data = np.genfromtxt(s, dtype="i8,f8,S5",
names=['myint','myfloat','mystring'], delimiter=",")
data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])

An example with fixed-width columns

s = StringIO("11.3abcde")
data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
delimiter=[1,3,5])
data
array((1, 1.3, 'abcde'),
dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])

get_array_wrap(*args)
Find the wrapper for the array with the highest priority.

In case of ties, leftmost wins. If no wrapper is found, return None

get_include()
Return the directory that contains the NumPy \*.h header files.

Extension modules that need to compile against NumPy should use this
function to locate the appropriate include directory.

Notes
-----
When using distutils, for example in setup.py.
::

import numpy as np
...
Extension('extension_name', ...
include_dirs=[np.get_include()])
...

get_printoptions()
Return the current print options.

Returns
-------
print_opts : dict
Dictionary of current print options with keys

- precision : int
- threshold : int
- edgeitems : int
- linewidth : int
- suppress : bool
- nanstr : str
- infstr : str
- formatter : dict of callables

For a full description of these options, see set_printoptions.

--------
set_printoptions, set_string_function

getbuffer(...)
getbuffer(obj [,offset[, size]])

Create a buffer object from the given object referencing a slice of
length size starting at offset.

Default is the entire buffer. A read-write buffer is attempted followed

Parameters
----------
obj : object

offset : int, optional

size : int, optional

Returns
-------
buffer_obj : buffer

Examples
--------
buf = np.getbuffer(np.ones(5), 1, 3)
len(buf)
3
buf
'\x00'
buf
<read-write buffer for 0x8af1e70, size 3, offset 1 at 0x8ba4ec0>

getbufsize()
Return the size of the buffer used in ufuncs.

Returns
-------
getbufsize : int
Size of ufunc buffer in bytes.

geterr()
Get the current way of handling floating-point errors.

Returns
-------
res : dict
A dictionary with keys "divide", "over", "under", and "invalid",
whose values are from the strings "ignore", "print", "log", "warn",
"raise", and "call". The keys represent possible floating-point
exceptions, and the values define how these exceptions are handled.

--------
geterrcall, seterr, seterrcall

Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples
--------
np.geterr()
{'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
'under': 'ignore'}
np.arange(3.) / np.arange(3.)
array([ NaN,   1.,   1.])

oldsettings = np.seterr(all='warn', over='raise')
np.geterr()
{'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
np.arange(3.) / np.arange(3.)
__main__:1: RuntimeWarning: invalid value encountered in divide
array([ NaN,   1.,   1.])

geterrcall()
Return the current callback function used on floating-point errors.

When the error handling for a floating-point error (one of "divide",
"over", "under", or "invalid") is set to 'call' or 'log', the function
that is called or the log instance that is written to is returned by
geterrcall. This function or log instance has been set with
seterrcall.

Returns
-------
The current error handler. If no handler was set through seterrcall,
None is returned.

--------
seterrcall, seterr, geterr

Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples
--------
np.geterrcall()  # we did not yet set a handler, returns None

oldsettings = np.seterr(all='call')
def err_handler(type, flag):
print "Floating point error (%s), with flag %s" % (type, flag)
oldhandler = np.seterrcall(err_handler)
np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([ Inf,  Inf,  Inf])

cur_handler = np.geterrcall()
cur_handler is err_handler
True

geterrobj(...)
geterrobj()

Return the current object that defines floating-point error handling.

The error object contains all information that defines the error handling
behavior in Numpy. geterrobj is used internally by the other
functions that get and set error handling behavior (geterr, seterr,
geterrcall, seterrcall).

Returns
-------
errobj : list
The error object, a list containing three elements:
[internal numpy buffer size, error mask, error callback function].

The error mask is a single integer that holds the treatment information
on all four floating point errors. The information for each error type
is contained in three bits of the integer. If we print it in base 8, we
can see what treatment is set for "invalid", "under", "over", and
"divide" (in that order). The printed string can be interpreted with

* 0 : 'ignore'
* 1 : 'warn'
* 2 : 'raise'
* 3 : 'call'
* 4 : 'print'
* 5 : 'log'

--------
seterrobj, seterr, geterr, seterrcall, geterrcall
getbufsize, setbufsize

Notes
-----
For complete documentation of the types of floating-point exceptions and
treatment options, see seterr.

Examples
--------
np.geterrobj()  # first get the defaults
[10000, 0, None]

def err_handler(type, flag):
print "Floating point error (%s), with flag %s" % (type, flag)
...
old_bufsize = np.setbufsize(20000)
old_err = np.seterr(divide='raise')
old_handler = np.seterrcall(err_handler)
np.geterrobj()
[20000, 2, <function err_handler at 0x91dcaac>]

old_err = np.seterr(all='ignore')
np.base_repr(np.geterrobj(), 8)
'0'
old_err = np.seterr(divide='warn', over='log', under='call',
invalid='print')
np.base_repr(np.geterrobj(), 8)
'4351'

Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences
in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.

Parameters
----------
f : array_like
An N-dimensional array containing samples of a scalar function.
varargs : list of scalar, optional
N scalars specifying the sample distances for each dimension,
i.e. dx, dy, dz, ... Default distance: 1.
edge_order : {1, 2}, optional
Gradient is calculated using N\ :sup:th order accurate differences
at the boundaries. Default: 1.

Returns
-------
Each element of list has the same shape as f giving the derivative
of f with respect to each dimension.

Examples
--------
x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
array([ 1. ,  1.5,  2.5,  3.5,  4.5,  5. ])
array([ 0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])

For two dimensional arrays, the return will be two arrays ordered by
axis. In this example the first array stands for the gradient in
rows and the second one in columns direction:

np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
[array([[ 2.,  2., -1.],
[ 2.,  2., -1.]]), array([[ 1. ,  2.5,  4. ],
[ 1. ,  1. ,  1. ]])]

x = np.array([0, 1, 2, 3, 4])
y = x**2
array([-0.,  2.,  4.,  6.,  8.])

hamming(M)
Return the Hamming window.

The Hamming window is a taper formed by using a weighted cosine.

Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.

Returns
-------
out : ndarray
The window, with the maximum value normalized to one (the value
one appears only if the number of samples is odd).

--------
bartlett, blackman, hanning, kaiser

Notes
-----
The Hamming window is defined as

.. math::  w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey
and is described in Blackman and Tukey. It was recommended for
smoothing the truncated autocovariance function in the time domain.
Most references to the Hamming window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References
----------
..  Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.
..  E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
University of Alberta Press, 1975, pp. 109-110.
..  Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
..  W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 425.

Examples
--------
np.hamming(12)
array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594,
0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
0.15302337,  0.08      ])

Plot the window and the frequency response:

from numpy.fft import fft, fftshift
window = np.hamming(51)
plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Hamming window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
plt.show()

plt.figure()
<matplotlib.figure.Figure object at 0x...>
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Frequency response of Hamming window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
plt.show()

hanning(M)
Return the Hanning window.

The Hanning window is a taper formed by using a weighted cosine.

Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.

Returns
-------
out : ndarray, shape(M,)
The window, with the maximum value normalized to one (the value
one appears only if M is odd).

--------
bartlett, blackman, hamming, kaiser

Notes
-----
The Hanning window is defined as

.. math::  w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right)
\qquad 0 \leq n \leq M-1

The Hanning was named for Julius von Hann, an Austrian meteorologist.
It is also known as the Cosine Bell. Some authors prefer that it be
called a Hann window, to help avoid confusion with the very similar
Hamming window.

Most references to the Hanning window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References
----------
..  Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.
..  E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
The University of Alberta Press, 1975, pp. 106-108.
..  Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
..  W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 425.

Examples
--------
np.hanning(12)
array([ 0.        ,  0.07937323,  0.29229249,  0.57115742,  0.82743037,
0.97974649,  0.97974649,  0.82743037,  0.57115742,  0.29229249,
0.07937323,  0.        ])

Plot the window and its frequency response:

from numpy.fft import fft, fftshift
window = np.hanning(51)
plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Hann window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
plt.show()

plt.figure()
<matplotlib.figure.Figure object at 0x...>
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
plt.title("Frequency response of the Hann window")
<matplotlib.text.Text object at 0x...>
plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
plt.show()

histogram(a, bins=10, range=None, normed=False, weights=None, density=None)
Compute the histogram of a set of data.

Parameters
----------
a : array_like
Input data. The histogram is computed over the flattened array.
bins : int or sequence of scalars, optional
If bins is an int, it defines the number of equal-width
bins in the given range (10, by default). If bins is a sequence,
it defines the bin edges, including the rightmost edge, allowing
for non-uniform bin widths.
range : (float, float), optional
The lower and upper range of the bins.  If not provided, range
is simply (a.min(), a.max()).  Values outside the range are
ignored.
normed : bool, optional
This keyword is deprecated in Numpy 1.6 due to confusing/buggy
behavior. It will be removed in Numpy 2.0. Use the density keyword
If False, the result will contain the number of samples
in each bin.  If True, the result is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that this latter behavior is
known to be buggy with unequal bin widths; use density instead.
weights : array_like, optional
An array of weights, of the same shape as a.  Each value in a
only contributes its associated weight towards the bin count
(instead of 1).  If normed is True, the weights are normalized,
so that the integral of the density over the range remains 1
density : bool, optional
If False, the result will contain the number of samples
in each bin.  If True, the result is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability *mass* function.
Overrides the normed keyword if given.

Returns
-------
hist : array
The values of the histogram. See normed and weights for a
description of the possible semantics.
bin_edges : array of dtype float
Return the bin edges (length(hist)+1).

--------
histogramdd, bincount, searchsorted, digitize

Notes
-----
All but the last (righthand-most) bin is half-open.  In other words, if
bins is::

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the
second [2, 3).  The last bin, however, is [3, 4], which *includes*
4.

Examples
--------
np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([ 0.25,  0.25,  0.25,  0.25]), array([0, 1, 2, 3, 4]))
np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

a = np.arange(5)
hist, bin_edges = np.histogram(a, density=True)
hist
array([ 0.5,  0. ,  0.5,  0. ,  0. ,  0.5,  0. ,  0.5,  0. ,  0.5])
hist.sum()
2.4999999999999996
np.sum(hist*np.diff(bin_edges))
1.0

histogram2d(x, y, bins=10, range=None, normed=False, weights=None)
Compute the bi-dimensional histogram of two data samples.

Parameters
----------
x : array_like, shape (N,)
An array containing the x coordinates of the points to be
histogrammed.
y : array_like, shape (N,)
An array containing the y coordinates of the points to be
histogrammed.
bins : int or array_like or [int, int] or [array, array], optional
The bin specification:

* If int, the number of bins for the two dimensions (nx=ny=bins).
* If array_like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
* If [int, int], the number of bins in each dimension
(nx, ny = bins).
* If [array, array], the bin edges in each dimension
(x_edges, y_edges = bins).
* A combination [int, array] or [array, int], where int
is the number of bins and array is the bin edges.

range : array_like, shape(2,2), optional
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters):
[[xmin, xmax], [ymin, ymax]]. All values outside of this range
will be considered outliers and not tallied in the histogram.
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density bin_count / sample_count / bin_area.
weights : array_like, shape(N,), optional
An array of values w_i weighing each sample (x_i, y_i).
Weights are normalized to 1 if normed is True. If normed is
False, the values of the returned histogram are equal to the sum of
the weights belonging to the samples falling into each bin.

Returns
-------
H : ndarray, shape(nx, ny)
The bi-dimensional histogram of samples x and y. Values in x
are histogrammed along the first dimension and values in y are
histogrammed along the second dimension.
xedges : ndarray, shape(nx,)
The bin edges along the first dimension.
yedges : ndarray, shape(ny,)
The bin edges along the second dimension.

--------
histogram : 1D histogram
histogramdd : Multidimensional histogram

Notes
-----
When normed is True, then the returned histogram is the sample
density, defined such that the sum over bins of the product
bin_value * bin_area is 1.

where x values are on the abscissa and y values on the ordinate
axis.  Rather, x is histogrammed along the first dimension of the
array (vertical), and y along the second dimension of the array
(horizontal).  This ensures compatibility with histogramdd.

Examples
--------
import matplotlib as mpl
import matplotlib.pyplot as plt

Construct a 2D-histogram with variable bin width. First define the bin
edges:

xedges = [0, 1, 1.5, 3, 5]
yedges = [0, 2, 3, 4, 6]

Next we create a histogram H with random bin content:

x = np.random.normal(3, 1, 100)
y = np.random.normal(1, 1, 100)
H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))

Or we fill the histogram H with a determined bin content:

H = np.ones((4, 4)).cumsum().reshape(4, 4)
print H[::-1]  # This shows the bin content in the order as plotted
[[ 13.  14.  15.  16.]
[  9.  10.  11.  12.]
[  5.   6.   7.   8.]
[  1.   2.   3.   4.]]

Imshow can only do an equidistant representation of bins:

fig = plt.figure(figsize=(7, 3))
ax.set_title('imshow: equidistant')
im = plt.imshow(H, interpolation='nearest', origin='low',
extent=[xedges, xedges[-1], yedges, yedges[-1]])

pcolormesh can display exact bin edges:

ax.set_title('pcolormesh: exact bin edges')
X, Y = np.meshgrid(xedges, yedges)
ax.pcolormesh(X, Y, H)
ax.set_aspect('equal')

NonUniformImage displays exact bin edges with interpolation:

ax.set_title('NonUniformImage: interpolated')
im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1])
ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1])
im.set_data(xcenters, ycenters, H)
ax.images.append(im)
ax.set_xlim(xedges, xedges[-1])
ax.set_ylim(yedges, yedges[-1])
ax.set_aspect('equal')
plt.show()

histogramdd(sample, bins=10, range=None, normed=False, weights=None)
Compute the multidimensional histogram of some data.

Parameters
----------
sample : array_like
The data to be histogrammed. It must be an (N,D) array or data
that can be converted to such. The rows of the resulting array
are the coordinates of points in a D dimensional polytope.
bins : sequence or int, optional
The bin specification:

* A sequence of arrays describing the bin edges along each dimension.
* The number of bins for each dimension (nx, ny, ... =bins)
* The number of bins for all dimensions (nx=ny=...=bins).

range : sequence, optional
A sequence of lower and upper bin edges to be used if the edges are
not given explicitly in bins. Defaults to the minimum and maximum
values along each dimension.
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density bin_count / sample_count / bin_volume.
weights : (N,) array_like, optional
An array of values w_i weighing each sample (x_i, y_i, z_i, ...).
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
weights belonging to the samples falling into each bin.

Returns
-------
H : ndarray
The multidimensional histogram of sample x. See normed and weights
for the different possible semantics.
edges : list
A list of D arrays describing the bin edges for each dimension.

--------
histogram: 1-D histogram
histogram2d: 2-D histogram

Examples
--------
r = np.random.randn(100,3)
H, edges = np.histogramdd(r, bins = (5, 8, 4))
H.shape, edges.size, edges.size, edges.size
((5, 8, 4), 6, 9, 5)

hsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation.  hsplit is equivalent
to split with axis=1, the array is always split along the second
axis regardless of the array dimension.

--------
split : Split an array into multiple sub-arrays of equal size.

Examples
--------
x = np.arange(16.0).reshape(4, 4)
x
array([[  0.,   1.,   2.,   3.],
[  4.,   5.,   6.,   7.],
[  8.,   9.,  10.,  11.],
[ 12.,  13.,  14.,  15.]])
np.hsplit(x, 2)
[array([[  0.,   1.],
[  4.,   5.],
[  8.,   9.],
[ 12.,  13.]]),
array([[  2.,   3.],
[  6.,   7.],
[ 10.,  11.],
[ 14.,  15.]])]
np.hsplit(x, np.array([3, 6]))
[array([[  0.,   1.,   2.],
[  4.,   5.,   6.],
[  8.,   9.,  10.],
[ 12.,  13.,  14.]]),
array([[  3.],
[  7.],
[ 11.],
[ 15.]]),
array([], dtype=float64)]

With a higher dimensional array the split is still along the second axis.

x = np.arange(8.0).reshape(2, 2, 2)
x
array([[[ 0.,  1.],
[ 2.,  3.]],
[[ 4.,  5.],
[ 6.,  7.]]])
np.hsplit(x, 2)
[array([[[ 0.,  1.]],
[[ 4.,  5.]]]),
array([[[ 2.,  3.]],
[[ 6.,  7.]]])]

hstack(tup)
Stack arrays in sequence horizontally (column wise).

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by hsplit.

Parameters
----------
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.

Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.

--------
stack : Join a sequence of arrays along a new axis.
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third axis).
concatenate : Join a sequence of arrays along an existing axis.
hsplit : Split array along second axis.

Notes
-----
Equivalent to np.concatenate(tup, axis=1)

Examples
--------
a = np.array((1,2,3))
b = np.array((2,3,4))
np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
a = np.array([,,])
b = np.array([,,])
np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])

i0(x)
Modified Bessel function of the first kind, order 0.

Usually denoted :math:I_0.  This function does broadcast, but will *not*
"up-cast" int dtype arguments unless accompanied by at least one float or
complex dtype argument (see Raises below).

Parameters
----------
x : array_like, dtype float or complex
Argument of the Bessel function.

Returns
-------
out : ndarray, shape = x.shape, dtype = x.dtype
The modified Bessel function evaluated at each of the elements of x.

Raises
------
TypeError: array cannot be safely cast to required type
If argument consists exclusively of int dtypes.

--------
scipy.special.iv, scipy.special.ive

Notes
-----
Abramowitz and Stegun _, for which the function domain is
partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
polynomial expansions are employed in each interval. Relative error on
the domain [0,30] using IEEE arithmetic is documented _ as having a
peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

References
----------
..  C. W. Clenshaw, "Chebyshev series for mathematical functions", in
*National Physical Laboratory Mathematical Tables*, vol. 5, London:
Her Majesty's Stationery Office, 1962.
..  M. Abramowitz and I. A. Stegun, *Handbook of Mathematical
Functions*, 10th printing, New York: Dover, 1964, pp. 379.
http://www.math.sfu.ca/~cbm/aands/page_379.htm
..  http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

Examples
--------
np.i0([0.])
array(1.0)
np.i0([0., 1. + 2j])
array([ 1.00000000+0.j        ,  0.18785373+0.64616944j])

identity(n, dtype=None)
Return the identity array.

The identity array is a square array with ones on
the main diagonal.

Parameters
----------
n : int
Number of rows (and columns) in n x n output.
dtype : data-type, optional
Data-type of the output.  Defaults to float.

Returns
-------
out : ndarray
n x n array with its main diagonal set to one,
and all other elements 0.

Examples
--------
np.identity(3)
array([[ 1.,  0.,  0.],
[ 0.,  1.,  0.],
[ 0.,  0.,  1.]])

imag(val)
Return the imaginary part of the elements of the array.

Parameters
----------
val : array_like
Input array.

Returns
-------
out : ndarray
Output array. If val is real, the type of val is used for the
output.  If val has complex elements, the returned type is float.

--------
real, angle, real_if_close

Examples
--------
a = np.array([1+2j, 3+4j, 5+6j])
a.imag
array([ 2.,  4.,  6.])
a.imag = np.array([8, 10, 12])
a
array([ 1. +8.j,  3.+10.j,  5.+12.j])

in1d(ar1, ar2, assume_unique=False, invert=False)
Test whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True
where an element of ar1 is in ar2 and False otherwise.

Parameters
----------
ar1 : (M,) array_like
Input array.
ar2 : array_like
The values against which to test each value of ar1.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.
invert : bool, optional
If True, the values in the returned array are inverted (that is,
False where an element of ar1 is in ar2 and True otherwise).
Default is False. np.in1d(a, b, invert=True) is equivalent
to (but is faster than) np.invert(in1d(a, b)).

Returns
-------
in1d : (M,) ndarray, bool
The values ar1[in1d] are in ar2.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Notes
-----
in1d can be considered as an element-wise function version of the
python keyword in, for 1-D sequences. in1d(a, b) is roughly
equivalent to np.array([item in b for item in a]).
However, this idea fails if ar2 is a set, or similar (non-sequence)
container:  As ar2 is converted to an array, in those cases
asarray(ar2) is an object array rather than the expected array of
contained values.

Examples
--------
test = np.array([0, 1, 2, 5, 0])
states = [0, 2]
array([ True, False,  True, False,  True], dtype=bool)
array([0, 2, 0])
array([False,  True, False,  True, False], dtype=bool)
array([1, 5])

indices(dimensions, dtype=<type 'int'>)
Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.

Parameters
----------
dimensions : sequence of ints
The shape of the grid.
dtype : dtype, optional
Data type of the result.

Returns
-------
grid : ndarray
The array of grid indices,
grid.shape = (len(dimensions),) + tuple(dimensions).

--------
mgrid, meshgrid

Notes
-----
The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if dimensions is a tuple
(r0, ..., rN-1) of length N, the output shape is
(N,r0,...,rN-1).

The subarrays grid[k] contains the N-D array of indices along the
k-th axis. Explicitly::

grid[k,i0,i1,...,iN-1] = ik

Examples
--------
grid = np.indices((2, 3))
grid.shape
(2, 2, 3)
grid        # row indices
array([[0, 0, 0],
[1, 1, 1]])
grid        # column indices
array([[0, 1, 2],
[0, 1, 2]])

The indices can be used as an index into an array.

x = np.arange(20).reshape(5, 4)
row, col = np.indices((2, 3))
x[row, col]
array([[0, 1, 2],
[4, 5, 6]])

Note that it would be more straightforward in the above example to
extract the required elements directly with x[:2, :3].

info(object=None, maxwidth=76, output=<open file '<stdout>', mode 'w'>, toplevel='numpy')
Get help information for a function, class, or module.

Parameters
----------
object : object or str, optional
Input object or name to get information about. If object is a
numpy object, its docstring is given. If it is a string, available
modules are searched for matching objects.  If None, information
about info itself is returned.
maxwidth : int, optional
Printing width.
output : file like object, optional
File like object that the output is written to, default is
stdout.  The object has to be opened in 'w' or 'a' mode.
toplevel : str, optional
Start search at this level.

--------
source, lookfor

Notes
-----
When used interactively with an object, np.info(obj) is equivalent
to help(obj) on the Python prompt or obj? on the IPython
prompt.

Examples
--------
np.info(np.polyval) # doctest: +SKIP
polyval(p, x)
Evaluate the polynomial p at x.
...

When using a string for object it is possible to get multiple results.

np.info('fft') # doctest: +SKIP
*** Found in numpy ***
Core FFT routines
...
*** Found in numpy.fft ***
fft(a, n=None, axis=-1)
...
*** Repeat reference found in numpy.fft.fftpack ***
*** Total of 3 references found. ***

inner(...)
inner(a, b)

Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex
conjugation), in higher dimensions a sum product over the last axes.

Parameters
----------
a, b : array_like
If a and b are nonscalar, their last dimensions of must match.

Returns
-------
out : ndarray
out.shape = a.shape[:-1] + b.shape[:-1]

Raises
------
ValueError
If the last dimension of a and b has different size.

--------
tensordot : Sum products over arbitrary axes.
dot : Generalised matrix product, using second last dimension of b.
einsum : Einstein summation convention.

Notes
-----
For vectors (1-D arrays) it computes the ordinary inner-product::

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0::

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly::

np.inner(a, b)[i0,...,ir-1,j0,...,js-1]
= sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:])

In addition a or b may be scalars, in which case::

np.inner(a,b) = a*b

Examples
--------
Ordinary inner product for vectors:

a = np.array([1,2,3])
b = np.array([0,1,0])
np.inner(a, b)
2

A multidimensional example:

a = np.arange(24).reshape((2,3,4))
b = np.arange(4)
np.inner(a, b)
array([[ 14,  38,  62],
[ 86, 110, 134]])

An example where b is a scalar:

np.inner(np.eye(2), 7)
array([[ 7.,  0.],
[ 0.,  7.]])

insert(arr, obj, values, axis=None)
Insert values along the given axis before the given indices.

Parameters
----------
arr : array_like
Input array.
obj : int, slice or sequence of ints
Object that defines the index or indices before which values is
inserted.

Support for multiple insertions when obj is a single scalar or a
sequence with one element (similar to calling insert multiple
times).
values : array_like
Values to insert into arr. If the type of values is different
from that of arr, values is converted to the type of arr.
values should be shaped so that arr[...,obj,...] = values
is legal.
axis : int, optional
Axis along which to insert values.  If axis is None then arr
is flattened first.

Returns
-------
out : ndarray
A copy of arr with values inserted.  Note that insert
does not occur in-place: a new array is returned. If
axis is None, out is a flattened array.

--------
append : Append elements at the end of an array.
concatenate : Join a sequence of arrays along an existing axis.
delete : Delete elements from an array.

Notes
-----
Note that for higher dimensional inserts obj=0 behaves very different
from obj= just like arr[:,0,:] = values is different from
arr[:,,:] = values.

Examples
--------
a = np.array([[1, 1], [2, 2], [3, 3]])
a
array([[1, 1],
[2, 2],
[3, 3]])
np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
[2, 5, 2],
[3, 5, 3]])

Difference between sequence and scalars:

np.insert(a, , [,,], axis=1)
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
np.insert(a, , [,,], axis=1))
True

b = a.flatten()
b
array([1, 1, 2, 2, 3, 3])
np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])

np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])

np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])

x = np.arange(8).reshape(2, 4)
idx = (1, 3)
np.insert(x, idx, 999, axis=1)
array([[  0, 999,   1,   2, 999,   3],
[  4, 999,   5,   6, 999,   7]])

int_asbuffer(...)

interp(x, xp, fp, left=None, right=None, period=None)
One-dimensional linear interpolation.

Returns the one-dimensional piecewise linear interpolant to a function
with given values at discrete data-points.

Parameters
----------
x : array_like
The x-coordinates of the interpolated values.

xp : 1-D sequence of floats
The x-coordinates of the data points, must be increasing if argument
period is not specified. Otherwise, xp is internally sorted after
normalizing the periodic boundaries with xp = xp % period.

fp : 1-D sequence of floats
The y-coordinates of the data points, same length as xp.

left : float, optional
Value to return for x < xp, default is fp.

right : float, optional
Value to return for x > xp[-1], default is fp[-1].

period : None or float, optional
A period for the x-coordinates. This parameter allows the proper
interpolation of angular x-coordinates. Parameters left and right
are ignored if period is specified.

Returns
-------
y : float or ndarray
The interpolated values, same shape as x.

Raises
------
ValueError
If xp and fp have different length
If xp or fp are not 1-D sequences
If period == 0

Notes
-----
Does not check that the x-coordinate sequence xp is increasing.
If xp is not increasing, the results are nonsense.
A simple check for increasing is::

np.all(np.diff(xp) > 0)

Examples
--------
xp = [1, 2, 3]
fp = [3, 2, 0]
np.interp(2.5, xp, fp)
1.0
np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([ 3. ,  3. ,  2.5 ,  0.56,  0. ])
UNDEF = -99.0
np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

x = np.linspace(0, 2*np.pi, 10)
y = np.sin(x)
xvals = np.linspace(0, 2*np.pi, 50)
yinterp = np.interp(xvals, x, y)
import matplotlib.pyplot as plt
plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
plt.show()

Interpolation with periodic x-coordinates:

x = [-180, -170, -185, 185, -10, -5, 0, 365]
xp = [190, -190, 350, -350]
fp = [5, 10, 3, 4]
np.interp(x, xp, fp, period=360)
array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75])

intersect1d(ar1, ar2, assume_unique=False)
Find the intersection of two arrays.

Return the sorted, unique values that are in both of the input arrays.

Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation.  Default is False.

Returns
-------
intersect1d : ndarray
Sorted 1D array of common and unique elements.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

To intersect more than two arrays, use functools.reduce:

from functools import reduce
reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array()

ipmt(rate, per, nper, pv, fv=0.0, when='end')
Compute the interest portion of a payment.

Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
Interest paid against the loan changes during the life or the loan.
The per is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
Number of compounding periods
pv : scalar or array_like of shape(M, )
Present value
fv : scalar or array_like of shape(M, ), optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.

Returns
-------
out : ndarray
Interest portion of payment.  If all input is scalar, returns a scalar
float.  If any input is array_like, returns interest payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.

--------
ppmt, pmt, pv

Notes
-----
The total payment is made up of payment against principal plus interest.

pmt = ppmt + ipmt

Examples
--------
What is the amortization schedule for a 1 year loan of $2500 at 8.24% interest per year compounded monthly? principal = 2500.00 The 'per' variable represents the periods of the loan. Remember that financial equations start the period count at 1! per = np.arange(1*12) + 1 ipmt = np.ipmt(0.0824/12, per, 1*12, principal) ppmt = np.ppmt(0.0824/12, per, 1*12, principal) Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal 'pmt'. pmt = np.pmt(0.0824/12, 1*12, principal) np.allclose(ipmt + ppmt, pmt) True fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}' for payment in per: index = payment - 1 principal = principal + ppmt[index] print fmt.format(payment, ppmt[index], ipmt[index], principal) 1 -200.58 -17.17 2299.42 2 -201.96 -15.79 2097.46 3 -203.35 -14.40 1894.11 4 -204.74 -13.01 1689.37 5 -206.15 -11.60 1483.22 6 -207.56 -10.18 1275.66 7 -208.99 -8.76 1066.67 8 -210.42 -7.32 856.25 9 -211.87 -5.88 644.38 10 -213.32 -4.42 431.05 11 -214.79 -2.96 216.26 12 -216.26 -1.49 -0.00 interestpd = np.sum(ipmt) np.round(interestpd, 2) -112.98 irr(values) Return the Internal Rate of Return (IRR). This is the "average" periodically compounded rate of return that gives a net present value of 0.0; for a more complete explanation, see Notes below. Parameters ---------- values : array_like, shape(N,) Input cash flows per time period. By convention, net "deposits" are negative and net "withdrawals" are positive. Thus, for example, at least the first element of values, which represents the initial investment, will typically be negative. Returns ------- out : float Internal Rate of Return for periodic input values. Notes ----- The IRR is perhaps best understood through an example (illustrated using np.irr in the Examples section below). Suppose one invests 100 units and then makes the following withdrawals at regular (fixed) intervals: 39, 59, 55, 20. Assuming the ending value is 0, one's 100 unit investment yields 173 units; however, due to the combination of compounding and the periodic withdrawals, the "average" rate of return is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution (for :math:r) of the equation: .. math:: -100 + \frac{39}{1+r} + \frac{59}{(1+r)^2} + \frac{55}{(1+r)^3} + \frac{20}{(1+r)^4} = 0 In general, for values :math:= [v_0, v_1, ... v_M], irr is the solution of the equation: [G]_ .. math:: \sum_{t=0}^M{\frac{v_t}{(1+irr)^{t}}} = 0 References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 348. Examples -------- round(irr([-100, 39, 59, 55, 20]), 5) 0.28095 round(irr([-100, 0, 0, 74]), 5) -0.0955 round(irr([-100, 100, 0, -7]), 5) -0.0833 round(irr([-100, 100, 0, 7]), 5) 0.06206 round(irr([-5, 10.5, 1, -8, 1]), 5) 0.0886 (Compare with the Example given for numpy.lib.financial.npv) is_busday(...) is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) Calculates which of the given dates are valid days, and which are not. .. versionadded:: 1.7.0 Parameters ---------- dates : array_like of datetime64[D] The array of dates to process. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A busdaycalendar object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of bool, optional If provided, this array is filled with the result. Returns ------- out : array of bool An array with the same shape as dates, containing True for each valid day, and False for each invalid day. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. busday_offset : Applies an offset counted in valid days. busday_count : Counts how many valid days are in a half-open date range. Examples -------- # The weekdays are Friday, Saturday, and Monday np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], holidays=['2011-07-01', '2011-07-04', '2011-07-17']) array([False, False, True], dtype='bool') isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False) Returns a boolean array where two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b. Parameters ---------- a, b : array_like Input arrays to compare. rtol : float The relative tolerance parameter (see Notes). atol : float The absolute tolerance parameter (see Notes). equal_nan : bool Whether to compare NaN's as equal. If True, NaN's in a will be considered equal to NaN's in b in the output array. Returns ------- y : array_like Returns a boolean array of where a and b are equal within the given tolerance. If both a and b are scalars, returns a single boolean value. See Also -------- allclose Notes ----- .. versionadded:: 1.7.0 For finite values, isclose uses the following equation to test whether two floating point values are equivalent. absolute(a - b) <= (atol + rtol * absolute(b)) The above equation is not symmetric in a and b, so that isclose(a, b) might be different from isclose(b, a) in some rare cases. Examples -------- np.isclose([1e10,1e-7], [1.00001e10,1e-8]) array([True, False]) np.isclose([1e10,1e-8], [1.00001e10,1e-9]) array([True, True]) np.isclose([1e10,1e-8], [1.0001e10,1e-9]) array([False, True]) np.isclose([1.0, np.nan], [1.0, np.nan]) array([True, False]) np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) array([True, True]) iscomplex(x) Returns a bool array, where True if input element is complex. What is tested is whether the input has a non-zero imaginary part, not if the input type is complex. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray of bools Output array. See Also -------- isreal iscomplexobj : Return True if x is a complex type or an array of complex numbers. Examples -------- np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) array([ True, False, False, False, False, True], dtype=bool) iscomplexobj(x) Check for a complex type or an array of complex numbers. The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero, iscomplexobj evaluates to True. Parameters ---------- x : any The input can be of any type and shape. Returns ------- iscomplexobj : bool The return value, True if x is of a complex type or has at least one complex element. See Also -------- isrealobj, iscomplex Examples -------- np.iscomplexobj(1) False np.iscomplexobj(1+0j) True np.iscomplexobj([3, 1+0j, True]) True isfortran(a) Returns True if the array is Fortran contiguous but *not* C contiguous. This function is obsolete and, because of changes due to relaxed stride checking, its return value for the same array may differ for versions of Numpy >= 1.10 and previous versions. If you only want to check if an array is Fortran contiguous use a.flags.f_contiguous instead. Parameters ---------- a : ndarray Input array. Examples -------- np.array allows to specify whether the array is written in C-contiguous order (last index varies the fastest), or FORTRAN-contiguous order in memory (first index varies the fastest). a = np.array([[1, 2, 3], [4, 5, 6]], order='C') a array([[1, 2, 3], [4, 5, 6]]) np.isfortran(a) False b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN') b array([[1, 2, 3], [4, 5, 6]]) np.isfortran(b) True The transpose of a C-ordered array is a FORTRAN-ordered array. a = np.array([[1, 2, 3], [4, 5, 6]], order='C') a array([[1, 2, 3], [4, 5, 6]]) np.isfortran(a) False b = a.T b array([[1, 4], [2, 5], [3, 6]]) np.isfortran(b) True C-ordered arrays evaluate as False even if they are also FORTRAN-ordered. np.isfortran(np.array([1, 2], order='FORTRAN')) False isneginf(x, y=None) Test element-wise for negative infinity, return result as bool array. Parameters ---------- x : array_like The input array. y : array_like, optional A boolean array with the same shape and type as x to store the result. Returns ------- y : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a numpy boolean array is returned with values True where the corresponding element of the input is negative infinity and values False where the element of the input is not negative infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value y is then a reference to that array. See Also -------- isinf, isposinf, isnan, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments have different shapes. Examples -------- np.isneginf(np.NINF) array(True, dtype=bool) np.isneginf(np.inf) array(False, dtype=bool) np.isneginf(np.PINF) array(False, dtype=bool) np.isneginf([-np.inf, 0., np.inf]) array([ True, False, False], dtype=bool) x = np.array([-np.inf, 0., np.inf]) y = np.array([2, 2, 2]) np.isneginf(x, y) array([1, 0, 0]) y array([1, 0, 0]) isposinf(x, y=None) Test element-wise for positive infinity, return result as bool array. Parameters ---------- x : array_like The input array. y : array_like, optional A boolean array with the same shape as x to store the result. Returns ------- y : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a boolean array is returned with values True where the corresponding element of the input is positive infinity and values False where the element of the input is not positive infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value y is then a reference to that array. See Also -------- isinf, isneginf, isfinite, isnan Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments have different shapes. Examples -------- np.isposinf(np.PINF) array(True, dtype=bool) np.isposinf(np.inf) array(True, dtype=bool) np.isposinf(np.NINF) array(False, dtype=bool) np.isposinf([-np.inf, 0., np.inf]) array([False, False, True], dtype=bool) x = np.array([-np.inf, 0., np.inf]) y = np.array([2, 2, 2]) np.isposinf(x, y) array([0, 0, 1]) y array([0, 0, 1]) isreal(x) Returns a bool array, where True if input element is real. If element has complex type with zero complex part, the return value for that element is True. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray, bool Boolean array of same shape as x. See Also -------- iscomplex isrealobj : Return True if x is not a complex type. Examples -------- np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j]) array([False, True, True, True, True, False], dtype=bool) isrealobj(x) Return True if x is a not complex type or an array of complex numbers. The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero, isrealobj evaluates to False if the data type is complex. Parameters ---------- x : any The input can be of any type and shape. Returns ------- y : bool The return value, False if x is of a complex type. See Also -------- iscomplexobj, isreal Examples -------- np.isrealobj(1) True np.isrealobj(1+0j) False np.isrealobj([3, 1+0j, True]) False isscalar(num) Returns True if the type of num is a scalar type. Parameters ---------- num : any Input argument, can be of any type and shape. Returns ------- val : bool True if num is a scalar type, False if it is not. Examples -------- np.isscalar(3.1) True np.isscalar([3.1]) False np.isscalar(False) True issctype(rep) Determines whether the given object represents a scalar data-type. Parameters ---------- rep : any If rep is an instance of a scalar dtype, True is returned. If not, False is returned. Returns ------- out : bool Boolean result of check whether rep is a scalar dtype. See Also -------- issubsctype, issubdtype, obj2sctype, sctype2char Examples -------- np.issctype(np.int32) True np.issctype(list) False np.issctype(1.1) False Strings are also a scalar type: np.issctype(np.dtype('str')) True issubclass_(arg1, arg2) Determine if a class is a subclass of a second class. issubclass_ is equivalent to the Python built-in issubclass, except that it returns False instead of raising a TypeError if one of the arguments is not a class. Parameters ---------- arg1 : class Input class. True is returned if arg1 is a subclass of arg2. arg2 : class or tuple of classes. Input class. If a tuple of classes, True is returned if arg1 is a subclass of any of the tuple elements. Returns ------- out : bool Whether arg1 is a subclass of arg2 or not. See Also -------- issubsctype, issubdtype, issctype Examples -------- np.issubclass_(np.int32, np.int) True np.issubclass_(np.int32, np.float) False issubdtype(arg1, arg2) Returns True if first argument is a typecode lower/equal in type hierarchy. Parameters ---------- arg1, arg2 : dtype_like dtype or string representing a typecode. Returns ------- out : bool See Also -------- issubsctype, issubclass_ numpy.core.numerictypes : Overview of numpy type hierarchy. Examples -------- np.issubdtype('S1', str) True np.issubdtype(np.float64, np.float32) False issubsctype(arg1, arg2) Determine if the first argument is a subclass of the second argument. Parameters ---------- arg1, arg2 : dtype or dtype specifier Data-types. Returns ------- out : bool The result. See Also -------- issctype, issubdtype,obj2sctype Examples -------- np.issubsctype('S8', str) True np.issubsctype(np.array(), np.int) True np.issubsctype(np.array(), np.float) False iterable(y) Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- np.iterable([1, 2, 3]) 1 np.iterable(2) 0 ix_(*args) Construct an open mesh from multiple sequences. This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions. Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]]. Parameters ---------- args : 1-D sequences Returns ------- out : tuple of ndarrays N arrays with N dimensions each, with N the number of input sequences. Together these arrays form an open mesh. See Also -------- ogrid, mgrid, meshgrid Examples -------- a = np.arange(10).reshape(2, 5) a array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) ixgrid = np.ix_([0,1], [2,4]) ixgrid (array([, ]), array([[2, 4]])) ixgrid.shape, ixgrid.shape ((2, 1), (1, 2)) a[ixgrid] array([[2, 4], [7, 9]]) kaiser(M, beta) Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}} \right)/I_0(\beta) with .. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2}, where :math:I_0 is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- ..  J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). ..  E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. ..  Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: from numpy.fft import fft, fftshift window = np.kaiser(51, 14) plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> plt.show() plt.figure() <matplotlib.figure.Figure object at 0x...> A = fft(window, 2048) / 25.5 mag = np.abs(fftshift(A)) freq = np.linspace(-0.5, 0.5, len(A)) response = 20 * np.log10(mag) response = np.clip(response, -100, 100) plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> plt.axis('tight') (-0.5, 0.5, -100.0, ...) plt.show() kron(a, b) Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a, b : array_like Returns ------- out : ndarray See Also -------- outer : The outer product Notes ----- The function assumes that the number of dimensions of a and b are the same, if necessary prepending the smallest with ones. If a.shape = (r0,r1,..,rN) and b.shape = (s0,s1,...,sN), the Kronecker product has shape (r0*s0, r1*s1, ..., rN*SN). The elements are products of elements from a and b, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- np.kron([1,10,100], [5,6,7]) array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) np.kron([5,6,7], [1,10,100]) array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) np.kron(np.eye(2), np.ones((2,2))) array([[ 1., 1., 0., 0.], [ 1., 1., 0., 0.], [ 0., 0., 1., 1.], [ 0., 0., 1., 1.]]) a = np.arange(100).reshape((2,5,2,5)) b = np.arange(24).reshape((2,3,4)) c = np.kron(a,b) c.shape (2, 10, 6, 20) I = (1,3,0,2) J = (0,2,1) J1 = (0,) + J # extend to ndim=4 S1 = (1,) + b.shape K = tuple(np.array(I) * np.array(S1) + np.array(J1)) c[K] == a[I]*b[J] True lexsort(...) lexsort(keys, axis=-1) Perform an indirect sort using a sequence of keys. Given multiple sorting keys, which can be interpreted as columns in a spreadsheet, lexsort returns an array of integer indices that describes the sort order by multiple columns. The last key in the sequence is used for the primary sort order, the second-to-last key for the secondary sort order, and so on. The keys argument must be a sequence of objects that can be converted to arrays of the same shape. If a 2D array is provided for the keys argument, it's rows are interpreted as the sorting keys and sorting is according to the last row, second last row etc. Parameters ---------- keys : (k, N) array or tuple containing k (N,)-shaped sequences The k different "columns" to be sorted. The last column (or row if keys is a 2D array) is the primary sort key. axis : int, optional Axis to be indirectly sorted. By default, sort over the last axis. Returns ------- indices : (N,) ndarray of ints Array of indices that sort the keys along the specified axis. See Also -------- argsort : Indirect sort. ndarray.sort : In-place sort. sort : Return a sorted copy of an array. Examples -------- Sort names: first by surname, then by name. surnames = ('Hertz', 'Galilei', 'Hertz') first_names = ('Heinrich', 'Galileo', 'Gustav') ind = np.lexsort((first_names, surnames)) ind array([1, 2, 0]) [surnames[i] + ", " + first_names[i] for i in ind] ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] Sort two columns of numbers: a = [1,5,1,4,3,4,4] # First column b = [9,4,0,4,0,2,1] # Second column ind = np.lexsort((b,a)) # Sort by a, then by b print ind [2 0 4 6 5 3 1] [(a[i],b[i]) for i in ind] [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] Note that sorting is first according to the elements of a. Secondary sorting is according to the elements of b. A normal argsort would have yielded: [(a[i],b[i]) for i in np.argsort(a)] [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] Structured arrays are sorted lexically by argsort: x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], dtype=np.dtype([('x', int), ('y', int)])) np.argsort(x) # or np.argsort(x, order=('x', 'y')) array([2, 0, 4, 6, 5, 3, 1]) linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. .. versionadded:: 1.9.0 Returns ------- samples : ndarray There are num equally spaced samples in the closed interval [start, stop] or the half-open interval [start, stop) (depending on whether endpoint is True or False). step : float Only returned if retstep is True Size of spacing between samples. See Also -------- arange : Similar to linspace, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: import matplotlib.pyplot as plt N = 8 y = np.zeros(N) x1 = np.linspace(0, 10, N, endpoint=True) x2 = np.linspace(0, 10, N, endpoint=False) plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] plt.ylim([-0.5, 1]) (-0.5, 1) plt.show() load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII') Load arrays or pickled objects from .npy, .npz or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the seek() and read() methods. Pickled files require that the file-like object support the readline() method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see numpy.memmap for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If fix_imports is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For .npz files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a .npy file, then a single array is returned. - If the file is a .npz file, then a dictionary-like object is returned, containing {filename: array} key-value pairs, one for each file in the archive. - If the file is a .npz file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: a=np.array([[1, 2, 3], [4, 5, 6]]) b=np.array([1, 2]) np.savez('/tmp/123.npz', a=a, b=b) data = np.load('/tmp/123.npz') data['a'] array([[1, 2, 3], [4, 5, 6]]) data['b'] array([1, 2]) data.close() Mem-map the stored array, and then access the second row directly from disk: X = np.load('/tmp/123.npy', mmap_mode='r') X[1, :] memmap([4, 5, 6]) loads(...) loads(string) -- Load a pickle from the given string loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0) Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is .gz or .bz2, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: converters = {0: datestr2num}. Converters can also be used to provide a default value for missing data (but see also genfromtxt): converters = {3: lambda s: float(s.strip() or 0)}. Default: None. skiprows : int, optional Skip the first skiprows lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using x, y, z = loadtxt(...). When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least ndmin dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- from io import StringIO # StringIO behaves like a file object c = StringIO("0 1\n2 3") np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) d = StringIO("M 21 72\nF 35 58") np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) c = StringIO("1,0,2\n3,0,4") x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) x array([ 1., 3.]) y array([ 2., 4.]) logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None) Return numbers spaced evenly on a log scale. In linear space, the sequence starts at base ** start (base to the power of start) and ends with base ** stop (see endpoint below). Parameters ---------- start : float base ** start is the starting value of the sequence. stop : float base ** stop is the final value of the sequence, unless endpoint is False. In that case, num + 1 values are spaced over the interval in log-space, of which all but the last (a sequence of length num) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, stop is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ln(samples) / ln(base) (or log_base(samples)) is uniform. Default is 10.0. dtype : dtype The type of the output array. If dtype is not given, infer the data type from the other input arguments. Returns ------- samples : ndarray num samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code y = np.linspace(start, stop, num=num, endpoint=endpoint) # doctest: +SKIP power(base, y).astype(dtype) # doctest: +SKIP Examples -------- np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: import matplotlib.pyplot as plt N = 10 x1 = np.logspace(0.1, 1, N, endpoint=True) x2 = np.logspace(0.1, 1, N, endpoint=False) y = np.zeros(N) plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] plt.ylim([-0.5, 1]) (-0.5, 1) plt.show() lookfor(what, module=None, import_modules=True, regenerate=False, output=None) Do a keyword search on docstrings. A list of of objects that matched the search is displayed, sorted by relevance. All given keywords need to be found in the docstring for it to be returned as a result, but the order does not matter. Parameters ---------- what : str String containing words to look for. module : str or list, optional Name of module(s) whose docstrings to go through. import_modules : bool, optional Whether to import sub-modules in packages. Default is True. regenerate : bool, optional Whether to re-generate the docstring cache. Default is False. output : file-like, optional File-like object to write the output to. If omitted, use a pager. See Also -------- source, info Notes ----- Relevance is determined only roughly, by checking if the keywords occur in the function name, at the start of a docstring, etc. Examples -------- np.lookfor('binary representation') Search results for 'binary representation' ------------------------------------------ numpy.binary_repr Return the binary representation of the input number as a string. numpy.core.setup_common.long_double_representation Given a binary dump as given by GNU od -b, look for long double numpy.base_repr Return a string representation of a number in the given base system. ... mafromtxt(fname, **kwargs) Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see genfromtxt. See Also -------- numpy.genfromtxt : generic function to load ASCII data. mask_indices(n, mask_func, k=0) Return the indices to access (n, n) arrays, given a masking function. Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k, when called as mask_func(a, k) returns a new array with zeros in certain locations (functions like triu or tril do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of triu, tril. That is, mask_func(x, k) returns a boolean array, shaped like x. k is an optional argument to the function. k : scalar An optional argument which is passed through to mask_func. Functions like triu, tril take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The n arrays of indices corresponding to the locations where mask_func(np.ones((n, n)), k) is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: iu = np.mask_indices(3, np.triu) For example, if a is a 3x3 array: a = np.arange(9).reshape(3, 3) a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: a[iu1] array([1, 2, 5]) mat = asmatrix(data, dtype=None) Interpret the input as a matrix. Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to matrix(data, copy=False). Parameters ---------- data : array_like Input data. dtype : data-type Data-type of the output matrix. Returns ------- mat : matrix data interpreted as a matrix. Examples -------- x = np.array([[1, 2], [3, 4]]) m = np.asmatrix(x) x[0,0] = 5 m matrix([[5, 2], [3, 4]]) matmul(...) matmul(a, b, out=None) Matrix product of two arrays. The behavior depends on the arguments in the following way. - If both arguments are 2-D they are multiplied like conventional matrices. - If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed. Multiplication by a scalar is not allowed, use * instead. Note that multiplying a stack of matrices with a vector will result in a stack of vectors, but matmul will not recognize it as such. matmul differs from dot in two important ways. - Multiplication by scalars is not allowed. - Stacks of matrices are broadcast together as if the matrices were elements. .. warning:: This function is preliminary and included in Numpy 1.10 for testing and documentation. Its semantics will not change, but the number and order of the optional arguments will. .. versionadded:: 1.10.0 Parameters ---------- a : array_like First argument. b : array_like Second argument. out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for dot(a,b). This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. Returns ------- output : ndarray Returns the dot product of a and b. If a and b are both 1-D arrays then a scalar is returned; otherwise an array is returned. If out is given, then it is returned. Raises ------ ValueError If the last dimension of a is not the same size as the second-to-last dimension of b. If scalar value is passed. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. dot : alternative matrix product with different broadcasting rules. Notes ----- The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465. Examples -------- For 2-D arrays it is the matrix product: a = [[1, 0], [0, 1]] b = [[4, 1], [2, 2]] np.matmul(a, b) array([[4, 1], [2, 2]]) For 2-D mixed with 1-D, the result is the usual. a = [[1, 0], [0, 1]] b = [1, 2] np.matmul(a, b) array([1, 2]) np.matmul(b, a) array([1, 2]) Broadcasting is conventional for stacks of arrays a = np.arange(2*2*4).reshape((2,2,4)) b = np.arange(2*2*4).reshape((2,4,2)) np.matmul(a,b).shape (2, 2, 2) np.matmul(a,b)[0,1,1] 98 sum(a[0,1,:] * b[0,:,1]) 98 Vector, vector returns the scalar inner product, but neither argument is complex-conjugated: np.matmul([2j, 3j], [2j, 3j]) (-13+0j) Scalar multiplication raises an error. np.matmul([1,2], 3) Traceback (most recent call last): ... ValueError: Scalar operands are not allowed, use '*' instead maximum_sctype(t) Return the scalar type of highest precision of the same kind as the input. Parameters ---------- t : dtype or dtype specifier The input data type. This can be a dtype object or an object that is convertible to a dtype. Returns ------- out : dtype The highest precision data type of the same kind (dtype.kind) as t. See Also -------- obj2sctype, mintypecode, sctype2char dtype Examples -------- np.maximum_sctype(np.int) <type 'numpy.int64'> np.maximum_sctype(np.uint8) <type 'numpy.uint64'> np.maximum_sctype(np.complex) <type 'numpy.complex192'> np.maximum_sctype(str) <type 'numpy.string_'> np.maximum_sctype('i2') <type 'numpy.int64'> np.maximum_sctype('f4') <type 'numpy.float96'> may_share_memory(...) Determine if two arrays can share memory The memory-bounds of a and b are computed. If they overlap then this function returns True. Otherwise, it returns False. A return of True does not necessarily mean that the two arrays share any element. It just means that they *might*. Parameters ---------- a, b : ndarray Returns ------- out : bool Examples -------- np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False mean(a, axis=None, dtype=None, out=None, keepdims=False) Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs. Parameters ---------- a : array_like Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. .. versionadded: 1.7.0 If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- m : ndarray, see dtype parameter above If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. See Also -------- average : Weighted average std, var, nanmean, nanstd, nanvar Notes ----- The arithmetic mean is the sum of the elements along the axis divided by the number of elements. Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue. Examples -------- a = np.array([[1, 2], [3, 4]]) np.mean(a) 2.5 np.mean(a, axis=0) array([ 2., 3.]) np.mean(a, axis=1) array([ 1.5, 3.5]) In single precision, mean can be inaccurate: a = np.zeros((2, 512*512), dtype=np.float32) a[0, :] = 1.0 a[1, :] = 0.1 np.mean(a) 0.546875 Computing the mean in float64 is more accurate: np.mean(a, dtype=np.float64) 0.55000000074505806 median(a, axis=None, out=None, overwrite_input=False, keepdims=False) Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if overwrite_input is True and the input is not already an ndarray, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. .. versionadded:: 1.9.0 Returns ------- median : ndarray A new array holding the result (unless out is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i.e., V_sorted[(N-1)/2], when N is odd. When N is even, it is the average of the two middle values of V_sorted. Examples -------- a = np.array([[10, 7, 4], [3, 2, 1]]) a array([[10, 7, 4], [ 3, 2, 1]]) np.median(a) 3.5 np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) np.median(a, axis=1) array([ 7., 2.]) m = np.median(a, axis=0) out = np.zeros_like(m) np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) m array([ 6.5, 4.5, 2.5]) b = a.copy() np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) assert not np.all(a==b) b = a.copy() np.median(b, axis=None, overwrite_input=True) 3.5 assert not np.all(a==b) meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that sparse=False, copy=False will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors x1, x2,..., 'xn' with lengths Ni=len(xi) , return (N1, N2, N3,...Nn) shaped arrays if indexing='ij' or (N2, N1, N3,...Nn) shaped arrays if indexing='xy' with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- nx, ny = (3, 2) x = np.linspace(0, 1, nx) y = np.linspace(0, 1, ny) xv, yv = meshgrid(x, y) xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays xv array([[ 0. , 0.5, 1. ]]) yv array([[ 0.], [ 1.]]) meshgrid is very useful to evaluate functions on a grid. x = np.arange(-5, 5, 0.1) y = np.arange(-5, 5, 0.1) xx, yy = meshgrid(x, y, sparse=True) z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) h = plt.contourf(x,y,z) min_scalar_type(...) min_scalar_type(a) For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For non-scalar array a, returns the vector's dtype unmodified. Floating point values are not demoted to integers, and complex values are not demoted to floats. Parameters ---------- a : scalar or array_like The value whose minimal data type is to be found. Returns ------- out : dtype The minimal data type. Notes ----- .. versionadded:: 1.6.0 See Also -------- result_type, promote_types, dtype, can_cast Examples -------- np.min_scalar_type(10) dtype('uint8') np.min_scalar_type(-260) dtype('int16') np.min_scalar_type(3.1) dtype('float16') np.min_scalar_type(1e50) dtype('float64') np.min_scalar_type(np.arange(4,dtype='f8')) dtype('float64') mintypecode(typechars, typeset='GDFgdf', default='d') Return the character for the minimum-size type to which given types can be safely cast. The returned type character must represent the smallest size dtype such that an array of the returned type can handle the data from an array of all types in typechars (or if typechars is an array, then its dtype.char). Parameters ---------- typechars : list of str or array_like If a list of strings, each string should represent a dtype. If array_like, the character representation of the array dtype is used. typeset : str or list of str, optional The set of characters that the returned character is chosen from. The default set is 'GDFgdf'. default : str, optional The default character, this is returned if none of the characters in typechars matches a character in typeset. Returns ------- typechar : str The character representing the minimum-size type that was found. See Also -------- dtype, sctype2char, maximum_sctype Examples -------- np.mintypecode(['d', 'f', 'S']) 'd' x = np.array([1.1, 2-3.j]) np.mintypecode(x) 'D' np.mintypecode('abceh', default='G') 'G' mirr(values, finance_rate, reinvest_rate) Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return msort(a) Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as a. See Also -------- sort Notes ----- np.msort(a) is equivalent to np.sort(a, axis=0). nan_to_num(x) Replace nan with zero and inf with finite numbers. Returns an array or scalar replacing Not a Number (NaN) with zero, (positive) infinity with a very large number and negative infinity with a very small (or negative) number. Parameters ---------- x : array_like Input data. Returns ------- out : ndarray New Array with the same shape as x and dtype of the element in x with the greatest precision. If x is inexact, then NaN is replaced by zero, and infinity (-infinity) is replaced by the largest (smallest or most negative) floating point value that fits in the output dtype. If x is not inexact, then a copy of x is returned. See Also -------- isinf : Shows which elements are negative or negative infinity. isneginf : Shows which elements are negative infinity. isposinf : Shows which elements are positive infinity. isnan : Shows which elements are Not a Number (NaN). isfinite : Shows which elements are finite (not NaN, not infinity) Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- np.set_printoptions(precision=8) x = np.array([np.inf, -np.inf, np.nan, -128, 128]) np.nan_to_num(x) array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, -1.28000000e+002, 1.28000000e+002]) nanargmax(a, axis=None) Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slices ValueError is raised. Warning: the results cannot be trusted if a slice contains only NaNs and -Infs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmax, nanargmin Examples -------- a = np.array([[np.nan, 4], [2, 3]]) np.argmax(a) 0 np.nanargmax(a) 1 np.nanargmax(a, axis=0) array([1, 0]) np.nanargmax(a, axis=1) array([1, 1]) nanargmin(a, axis=None) Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slices ValueError is raised. Warning: the results cannot be trusted if a slice contains only NaNs and Infs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmin, nanargmax Examples -------- a = np.array([[np.nan, 4], [2, 3]]) np.argmin(a) 0 np.nanargmin(a) 2 np.nanargmin(a, axis=0) array([1, 1]) np.nanargmin(a, axis=1) array([1, 0]) nanmax(a, axis=None, out=None, keepdims=False) Return the maximum of an array or maximum along an axis, ignoring any NaNs. When all-NaN slices are encountered a RuntimeWarning is raised and NaN is returned for that slice. Parameters ---------- a : array_like Array containing numbers whose maximum is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the maximum is computed. The default is to compute the maximum of the flattened array. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. .. versionadded:: 1.8.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a. .. versionadded:: 1.8.0 Returns ------- nanmax : ndarray An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned. See Also -------- nanmin : The minimum value of an array along a given axis, ignoring any NaNs. amax : The maximum value of an array along a given axis, propagating any NaNs. fmax : Element-wise maximum of two arrays, ignoring any NaNs. maximum : Element-wise maximum of two arrays, propagating any NaNs. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are neither NaN nor infinity. amin, fmin, minimum Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type the function is equivalent to np.max. Examples -------- a = np.array([[1, 2], [3, np.nan]]) np.nanmax(a) 3.0 np.nanmax(a, axis=0) array([ 3., 2.]) np.nanmax(a, axis=1) array([ 2., 3.]) When positive infinity and negative infinity are present: np.nanmax([1, 2, np.nan, np.NINF]) 2.0 np.nanmax([1, 2, np.nan, np.inf]) inf nanmean(a, axis=None, dtype=None, out=None, keepdims=False) Compute the arithmetic mean along the specified axis, ignoring NaNs. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs. For all-NaN slices, NaN is returned and a RuntimeWarning is raised. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the means are computed. The default is to compute the mean of the flattened array. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is float64; for inexact inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- m : ndarray, see dtype parameter above If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Nan is returned for slices that contain only NaNs. See Also -------- average : Weighted average mean : Arithmetic mean taken while not ignoring NaNs var, nanvar Notes ----- The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN elements. Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue. Examples -------- a = np.array([[1, np.nan], [3, 4]]) np.nanmean(a) 2.6666666666666665 np.nanmean(a, axis=0) array([ 2., 4.]) np.nanmean(a, axis=1) array([ 1., 3.5]) nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=False) Compute the median along the specified axis, while ignoring NaNs. Returns the median of the array elements. .. versionadded:: 1.9.0 Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if overwrite_input is True and the input is not already an ndarray, an error will be raised. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- median : ndarray A new array holding the result. If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i.e., V_sorted[(N-1)/2], when N is odd. When N is even, it is the average of the two middle values of V_sorted. Examples -------- a = np.array([[10.0, 7, 4], [3, 2, 1]]) a[0, 1] = np.nan a array([[ 10., nan, 4.], [ 3., 2., 1.]]) np.median(a) nan np.nanmedian(a) 3.0 np.nanmedian(a, axis=0) array([ 6.5, 2., 2.5]) np.median(a, axis=1) array([ 7., 2.]) b = a.copy() np.nanmedian(b, axis=1, overwrite_input=True) array([ 7., 2.]) assert not np.all(a==b) b = a.copy() np.nanmedian(b, axis=None, overwrite_input=True) 3.0 assert not np.all(a==b) nanmin(a, axis=None, out=None, keepdims=False) Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encountered a RuntimeWarning is raised and Nan is returned for that slice. Parameters ---------- a : array_like Array containing numbers whose minimum is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the minimum is computed. The default is to compute the minimum of the flattened array. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. .. versionadded:: 1.8.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original a. .. versionadded:: 1.8.0 Returns ------- nanmin : ndarray An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned. See Also -------- nanmax : The maximum value of an array along a given axis, ignoring any NaNs. amin : The minimum value of an array along a given axis, propagating any NaNs. fmin : Element-wise minimum of two arrays, ignoring any NaNs. minimum : Element-wise minimum of two arrays, propagating any NaNs. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are neither NaN nor infinity. amax, fmax, maximum Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type the function is equivalent to np.min. Examples -------- a = np.array([[1, 2], [3, np.nan]]) np.nanmin(a) 1.0 np.nanmin(a, axis=0) array([ 1., 2.]) np.nanmin(a, axis=1) array([ 1., 3.]) When positive infinity and negative infinity are present: np.nanmin([1, 2, np.nan, np.inf]) 1.0 np.nanmin([1, 2, np.nan, np.NINF]) -inf nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False) Compute the qth percentile of the data along the specified axis, while ignoring nan values. Returns the qth percentile of the array elements. .. versionadded:: 1.9.0 Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int or sequence of int, optional Axis along which the percentiles are computed. The default (None) is to compute the percentiles along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array a for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the content of the passed in array a after this function completes -- treat it as undefined. Default is False. Note that, if the a input is not already an array this parameter will have no effect, a will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: * linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. * lower: i. * higher: j. * nearest: i or j whichever is nearest. * midpoint: (i + j) / 2. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- nanpercentile : scalar or ndarray If a single percentile q is given and axis=None a scalar is returned. If multiple percentiles q are given an array holding the result is returned. The results are listed in the first axis. (If out is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- nanmean, nanmedian, percentile, median, mean Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the interpolation parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if q=50, the same as the minimum if q=0and the same as the maximum if q=100. Examples -------- a = np.array([[10., 7., 4.], [3., 2., 1.]]) a = np.nan a array([[ 10., nan, 4.], [ 3., 2., 1.]]) np.percentile(a, 50) nan np.nanpercentile(a, 50) 3.5 np.nanpercentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) np.nanpercentile(a, 50, axis=1) array([[ 7.], [ 2.]]) m = np.nanpercentile(a, 50, axis=0) out = np.zeros_like(m) np.nanpercentile(a, 50, axis=0, out=m) array([[ 6.5, 4.5, 2.5]]) m array([[ 6.5, 4.5, 2.5]]) b = a.copy() np.nanpercentile(b, 50, axis=1, overwrite_input=True) array([[ 7.], [ 2.]]) assert not np.all(a==b) b = a.copy() np.nanpercentile(b, 50, axis=None, overwrite_input=True) array([ 3.5]) nanprod(a, axis=None, dtype=None, out=None, keepdims=0) Return the product of array elements over a given axis treating Not a Numbers (NaNs) as zero. One is returned for slices that are all-NaN or empty. .. versionadded:: 1.10.0 Parameters ---------- a : array_like Array containing numbers whose sum is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the product is computed. The default is to compute the product of the flattened array. dtype : data-type, optional The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the platform (u)intp. In that case, the default will be either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact inputs, dtype must be inexact. out : ndarray, optional Alternate output array in which to place the result. The default is None. If provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unexpected results. keepdims : bool, optional If True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- y : ndarray or numpy scalar See Also -------- numpy.prod : Product across array propagating NaNs. isnan : Show which elements are NaN. Notes ----- Numpy integer arithmetic is modular. If the size of a product exceeds the size of an integer accumulator, its value will wrap around and the result will be incorrect. Specifying dtype=double can alleviate that problem. Examples -------- np.nanprod(1) 1 np.nanprod() 1 np.nanprod([1, np.nan]) 1.0 a = np.array([[1, 2], [3, np.nan]]) np.nanprod(a) 6.0 np.nanprod(a, axis=0) array([ 3., 2.]) nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False) Compute the standard deviation along the specified axis, while ignoring NaNs. Returns the standard deviation, a measure of the spread of a distribution, of the non-NaN array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Calculate the standard deviation of the non-NaN values. axis : int, optional Axis along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of non-NaN elements. By default ddof is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- standard_deviation : ndarray, see dtype parameter above. If out is None, return a new array containing the standard deviation, otherwise return a reference to the output array. If ddof is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is NaN. See Also -------- var, mean, std nanvar, nanmean numpy.doc.ufuncs : Section "Output arguments" Notes ----- The standard deviation is the square root of the average of the squared deviations from the mean: std = sqrt(mean(abs(x - x.mean())**2)). The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate of the variance for normally distributed variables. The standard deviation computed in this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard deviation per se. Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real and nonnegative. For floating-point input, the *std* is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the dtype keyword can alleviate this issue. Examples -------- a = np.array([[1, np.nan], [3, 4]]) np.nanstd(a) 1.247219128924647 np.nanstd(a, axis=0) array([ 1., 0.]) np.nanstd(a, axis=1) array([ 0., 0.5]) nansum(a, axis=None, dtype=None, out=None, keepdims=0) Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. In Numpy versions <= 1.8 Nan is returned for slices that are all-NaN or empty. In later versions zero is returned. Parameters ---------- a : array_like Array containing numbers whose sum is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the sum is computed. The default is to compute the sum of the flattened array. dtype : data-type, optional The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the platform (u)intp. In that case, the default will be either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact inputs, dtype must be inexact. .. versionadded:: 1.8.0 out : ndarray, optional Alternate output array in which to place the result. The default is None. If provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unexpected results. .. versionadded:: 1.8.0 keepdims : bool, optional If True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. .. versionadded:: 1.8.0 Returns ------- y : ndarray or numpy scalar See Also -------- numpy.sum : Sum across array propagating NaNs. isnan : Show which elements are NaN. isfinite: Show which elements are not NaN or +/-inf. Notes ----- If both positive and negative infinity are present, the sum will be Not A Number (NaN). Numpy integer arithmetic is modular. If the size of a sum exceeds the size of an integer accumulator, its value will wrap around and the result will be incorrect. Specifying dtype=double can alleviate that problem. Examples -------- np.nansum(1) 1 np.nansum() 1 np.nansum([1, np.nan]) 1.0 a = np.array([[1, 1], [1, np.nan]]) np.nansum(a) 3.0 np.nansum(a, axis=0) array([ 2., 1.]) np.nansum([1, np.nan, np.inf]) inf np.nansum([1, np.nan, np.NINF]) -inf np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present nan nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False) Compute the variance along the specified axis, while ignoring NaNs. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Array containing numbers whose variance is desired. If a is not an array, a conversion is attempted. axis : int, optional Axis along which the variance is computed. The default is to compute the variance of the flattened array. dtype : data-type, optional Type to use in computing the variance. For arrays of integer type the default is float32; for arrays of float types it is the same as the array type. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output, but the type is cast if necessary. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof, where N represents the number of non-NaN elements. By default ddof is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- variance : ndarray, see dtype parameter above If out is None, return a new array containing the variance, otherwise return a reference to the output array. If ddof is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is NaN. See Also -------- std : Standard deviation mean : Average var : Variance while not ignoring NaNs nanstd, nanmean numpy.doc.ufuncs : Section "Output arguments" Notes ----- The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.mean())**2). The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the variance for normally distributed variables. Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and nonnegative. For floating-point input, the variance is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the dtype keyword can alleviate this issue. Examples -------- a = np.array([[1, np.nan], [3, 4]]) np.var(a) 1.5555555555555554 np.nanvar(a, axis=0) array([ 1., 0.]) np.nanvar(a, axis=1) array([ 0., 0.25]) ndfromtxt(fname, **kwargs) Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see genfromtxt. See Also -------- numpy.genfromtxt : generic function. ndim(a) Return the number of dimensions of an array. Parameters ---------- a : array_like Input array. If it is not already an ndarray, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in a. Scalars are zero-dimensional. See Also -------- ndarray.ndim : equivalent method shape : dimensions of array ndarray.shape : dimensions of array Examples -------- np.ndim([[1,2,3],[4,5,6]]) 2 np.ndim(np.array([[1,2,3],[4,5,6]])) 2 np.ndim(1) 0 nested_iters(...) newbuffer(...) newbuffer(size) Return a new uninitialized buffer object. Parameters ---------- size : int Size in bytes of returned buffer object. Returns ------- newbuffer : buffer object Returned, uninitialized buffer object of size bytes. nonzero(a) Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that dimension. The values in a are always tested and returned in row-major, C-style order. The corresponding non-zero values can be obtained with:: a[nonzero(a)] To group the indices by element, rather than dimension, use:: transpose(nonzero(a)) The result of this is always a 2-D array, with a row for each non-zero element. Parameters ---------- a : array_like Input array. Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- flatnonzero : Return indices that are non-zero in the flattened version of the input array. ndarray.nonzero : Equivalent ndarray method. count_nonzero : Counts the number of non-zero elements in the input array. Examples -------- x = np.eye(3) x array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) np.nonzero(x) (array([0, 1, 2]), array([0, 1, 2])) x[np.nonzero(x)] array([ 1., 1., 1.]) np.transpose(np.nonzero(x)) array([[0, 0], [1, 1], [2, 2]]) A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the a where the condition is true. a = np.array([[1,2,3],[4,5,6],[7,8,9]]) a > 3 array([[False, False, False], [ True, True, True], [ True, True, True]], dtype=bool) np.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) The nonzero method of the boolean array can also be called. (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) nper(rate, pmt, pv, fv=0, when='end') Compute the number of periodic payments. Parameters ---------- rate : array_like Rate of interest (per period) pmt : array_like Payment pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) Notes ----- The number of periods nper is computed by solving the equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0 but if rate = 0 then:: fv + pv + pmt*nper = 0 Examples -------- If you only had$150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest? print round(np.nper(0.07/12, -150, 8000), 5) 64.07335 So, over 64 months would be required to pay off the loan. The same analysis could be done with several different interest rates and/or payments and/or total amounts to produce an entire table. np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12, -150 : -99 : 50 , 8000 : 9001 : 1000])) array([[[ 64.07334877, 74.06368256], [ 108.07548412, 127.99022654]], [[ 66.12443902, 76.87897353], [ 114.70165583, 137.90124779]]]) npv(rate, values) Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which rate is given (i.e., if rate is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; values must begin with the initial investment, thus values will typically be negative. Returns ------- out : float The NPV of the input cash flow series values at the discount rate. Notes ----- Returns the result of: [G]_ .. math :: \sum_{t=0}^{M-1}{\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0084785916384548798 (Compare with the Example given for numpy.lib.financial.irr) obj2sctype(rep, default=None) Return the scalar dtype or NumPy equivalent of Python type of an object. Parameters ---------- rep : any The object of which the type is returned. default : any, optional If given, this is returned for objects whose types can not be determined. If not given, None is returned for those objects. Returns ------- dtype : dtype or Python type The data type of rep. See Also -------- sctype2char, issctype, issubsctype, issubdtype, maximum_sctype Examples -------- np.obj2sctype(np.int32) <type 'numpy.int32'> np.obj2sctype(np.array([1., 2.])) <type 'numpy.float64'> np.obj2sctype(np.array([1.j])) <type 'numpy.complex128'> np.obj2sctype(dict) <type 'numpy.object_'> np.obj2sctype('string') <type 'numpy.string_'> np.obj2sctype(1, default=list) <type 'list'> ones(shape, dtype=None, order='C') Return a new array of given shape and type, filled with ones. Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., (2, 3) or 2. dtype : data-type, optional The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Returns ------- out : ndarray Array of ones with the given shape, dtype, and order. See Also -------- zeros, ones_like Examples -------- np.ones(5) array([ 1., 1., 1., 1., 1.]) np.ones((5,), dtype=np.int) array([1, 1, 1, 1, 1]) np.ones((2, 1)) array([[ 1.], [ 1.]]) s = (2,2) np.ones(s) array([[ 1., 1.], [ 1., 1.]]) ones_like(a, dtype=None, order='K', subok=True) Return an array of ones with the same shape and type as a given array. Parameters ---------- a : array_like The shape and data-type of a define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. .. versionadded:: 1.6.0 order : {'C', 'F', 'A', or 'K'}, optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if a is Fortran contiguous, 'C' otherwise. 'K' means match the layout of a as closely as possible. .. versionadded:: 1.6.0 subok : bool, optional. If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to True. Returns ------- out : ndarray Array of ones with the same shape and type as a. See Also -------- zeros_like : Return an array of zeros with shape and type of input. empty_like : Return an empty array with shape and type of input. zeros : Return a new array setting values to zero. ones : Return a new array setting values to one. empty : Return a new uninitialized array. Examples -------- x = np.arange(6) x = x.reshape((2, 3)) x array([[0, 1, 2], [3, 4, 5]]) np.ones_like(x) array([[1, 1, 1], [1, 1, 1]]) y = np.arange(3, dtype=np.float) y array([ 0., 1., 2.]) np.ones_like(y) array([ 1., 1., 1.]) outer(a, b, out=None) Compute the outer product of two vectors. Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product _ is:: [[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]] Parameters ---------- a : (M,) array_like First input vector. Input is flattened if not already 1-dimensional. b : (N,) array_like Second input vector. Input is flattened if not already 1-dimensional. out : (M, N) ndarray, optional A location where the result is stored .. versionadded:: 1.9.0 Returns ------- out : (M, N) ndarray out[i, j] = a[i] * b[j] See also -------- inner, einsum References ---------- ..  : G. H. Golub and C. F. van Loan, *Matrix Computations*, 3rd ed., Baltimore, MD, Johns Hopkins University Press, 1996, pg. 8. Examples -------- Make a (*very* coarse) grid for computing a Mandelbrot set: rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]]) im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) im array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], [ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], [ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) grid = rl + im grid array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]]) An example using a "vector" of letters: x = np.array(['a', 'b', 'c'], dtype=object) np.outer(x, [1, 2, 3]) array([[a, aa, aaa], [b, bb, bbb], [c, cc, ccc]], dtype=object) packbits(...) packbits(myarray, axis=None) Packs the elements of a binary-valued array into bits in a uint8 array. The result is padded to full bytes by inserting zero bits at the end. Parameters ---------- myarray : array_like An integer type array whose elements should be packed to bits. axis : int, optional The dimension over which bit-packing is done. None implies packing the flattened array. Returns ------- packed : ndarray Array of type uint8 whose elements represent bits corresponding to the logical (0 or nonzero) value of the input elements. The shape of packed has the same number of dimensions as the input (unless axis is None, in which case the output is 1-D). See Also -------- unpackbits: Unpacks elements of a uint8 array into a binary-valued output array. Examples -------- a = np.array([[[1,0,1], [0,1,0]], [[1,1,0], [0,0,1]]]) b = np.packbits(a, axis=-1) b array([[,],[,]], dtype=uint8) Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000. pad(array, pad_width, mode=None, **kwargs) Pads an array. Parameters ---------- array : array_like of rank N Input array pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function One of the following string values or a user supplied function. 'constant' Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' Pads with the linear ramp between end_value and the array edge value. 'maximum' Pads with the maximum value of all or part of the vector along each axis. 'mean' Pads with the mean value of all or part of the vector along each axis. 'median' Pads with the median value of all or part of the vector along each axis. 'minimum' Pads with the minimum value of all or part of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. <function> Padding function, see Notes. stat_length : sequence or int, optional Used in 'maximum', 'mean', 'median', and 'minimum'. Number of values at edge of each axis used to calculate the statistic value. ((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis. ((before, after),) yields same before and after statistic lengths for each axis. (stat_length,) or int is a shortcut for before = after = statistic length for all axes. Default is None, to use the entire axis. constant_values : sequence or int, optional Used in 'constant'. The values to set the padded values for each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or int is a shortcut for before = after = constant for all axes. Default is 0. end_values : sequence or int, optional Used in 'linear_ramp'. The values used for the ending value of the linear_ramp and that will form the edge of the padded array. ((before_1, after_1), ... (before_N, after_N)) unique end values for each axis. ((before, after),) yields same before and after end values for each axis. (constant,) or int is a shortcut for before = after = end value for all axes. Default is 0. reflect_type : {'even', 'odd'}, optional Used in 'reflect', and 'symmetric'. The 'even' style is the default with an unaltered reflection around the edge value. For the 'odd' style, the extented part of the array is created by subtracting the reflected values from two times the edge value. Returns ------- pad : ndarray Padded array of rank equal to array with shape increased according to pad_width. Notes ----- .. versionadded:: 1.7.0 For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis. The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded values replaced. It has the following signature:: padding_func(vector, iaxis_pad_width, iaxis, **kwargs) where vector : ndarray A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple] and vector[-pad_tuple:]. iaxis_pad_width : tuple A 2-tuple of ints, iaxis_pad_width represents the number of values padded at the beginning of vector where iaxis_pad_width represents the number of values padded at the end of vector. iaxis : int The axis currently being calculated. kwargs : misc Any keyword arguments the function requires. Examples -------- a = [1, 2, 3, 4, 5] np.lib.pad(a, (2,3), 'constant', constant_values=(4, 6)) array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) np.lib.pad(a, (2, 3), 'edge') array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) np.lib.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) np.lib.pad(a, (2,), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5]) np.lib.pad(a, (2,), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) np.lib.pad(a, (2,), 'median') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) a = [[1, 2], [3, 4]] np.lib.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]]) a = [1, 2, 3, 4, 5] np.lib.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) np.lib.pad(a, (2, 3), 'reflect', reflect_type='odd') array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) np.lib.pad(a, (2, 3), 'symmetric') array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) np.lib.pad(a, (2, 3), 'symmetric', reflect_type='odd') array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) np.lib.pad(a, (2, 3), 'wrap') array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) def padwithtens(vector, pad_width, iaxis, kwargs): vector[:pad_width] = 10 vector[-pad_width:] = 10 return vector a = np.arange(6) a = a.reshape((2, 3)) np.lib.pad(a, 2, padwithtens) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]]) partition(a, kth, axis=-1, kind='introselect', order=None) Return a partitioned copy of an array. Creates a copy of the array with its elements rearranged in such a way that the value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Array to be sorted. kth : int or sequence of ints Element index to partition by. The kth value of the element will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once. axis : int or None, optional Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : {'introselect'}, optional Selection algorithm. Default is 'introselect'. order : str or list of str, optional When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string. Not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- partitioned_array : ndarray Array of the same type and shape as a. See Also -------- ndarray.partition : Method to sort an array in-place. argpartition : Indirect partition. sort : Full sorting Notes ----- The various selection algorithms are characterized by their average speed, worst case performance, work space size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The available algorithms have the following properties: ================= ======= ============= ============ ======= kind speed worst case work space stable ================= ======= ============= ============ ======= 'introselect' 1 O(n) 0 no ================= ======= ============= ============ ======= All the partition algorithms make temporary copies of the data when partitioning along any but the last axis. Consequently, partitioning along the last axis is faster and uses less space than partitioning along any other axis. The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the order is determined by the real parts except when they are equal, in which case the order is determined by the imaginary parts. Examples -------- a = np.array([3, 4, 2, 1]) np.partition(a, 3) array([2, 1, 3, 4]) np.partition(a, (1, 3)) array([1, 2, 3, 4]) percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False) Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int or sequence of int, optional Axis along which the percentiles are computed. The default (None) is to compute the percentiles along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array a for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve the contents of the input array. In this case you should not make any assumptions about the content of the passed in array a after this function completes -- treat it as undefined. Default is False. Note that, if the a input is not already an array this parameter will have no effect, a will be converted to an array internally regardless of the value of this parameter. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: * linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. * lower: i. * higher: j. * nearest: i or j whichever is nearest. * midpoint: (i + j) / 2. .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a. .. versionadded:: 1.9.0 Returns ------- percentile : scalar or ndarray If a single percentile q is given and axis=None a scalar is returned. If multiple percentiles q are given an array holding the result is returned. The results are listed in the first axis. (If out is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the interpolation parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if q=50, the same as the minimum if q=0 and the same as the maximum if q=100. Examples -------- a = np.array([[10, 7, 4], [3, 2, 1]]) a array([[10, 7, 4], [ 3, 2, 1]]) np.percentile(a, 50) array([ 3.5]) np.percentile(a, 50, axis=0) array([[ 6.5, 4.5, 2.5]]) np.percentile(a, 50, axis=1) array([[ 7.], [ 2.]]) m = np.percentile(a, 50, axis=0) out = np.zeros_like(m) np.percentile(a, 50, axis=0, out=m) array([[ 6.5, 4.5, 2.5]]) m array([[ 6.5, 4.5, 2.5]]) b = a.copy() np.percentile(b, 50, axis=1, overwrite_input=True) array([[ 7.], [ 2.]]) assert not np.all(a==b) b = a.copy() np.percentile(b, 50, axis=None, overwrite_input=True) array([ 3.5]) piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in funclist. Wherever condlist[i] is True, funclist[i](x) is used as the output value. Each boolean array in condlist selects a piece of x, and should therefore be of the same shape as x. The length of condlist must correspond to that of funclist. If one extra function is given, i.e. if len(funclist) - len(condlist) == 1, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over x wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (lambda x: scalar) is assumed. args : tuple, optional Any further arguments given to piecewise are passed to the functions upon execution, i.e., if called piecewise(..., ..., 1, 'a'), then each function is called as f(x, 1, 'a'). kw : dict, optional Keyword arguments used in calling piecewise are passed to the functions upon execution, i.e., if called piecewise(..., ..., lambda=1), then each function is called as f(x, lambda=1). Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in funclist on the appropriate portions of x, as defined by the boolean arrays in condlist. Portions not covered by any condition have a default value of 0. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corresponding condition from condlist. The result is:: |-- |funclist(x[condlist]) out = |funclist(x[condlist]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for x < 0 and +1 for x >= 0. x = np.linspace(-2.5, 2.5, 6) np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is -x for x <0 and x for x >= 0. np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) pkgload(*packages, **options) Load one or more packages into parent package top-level namespace. This function is intended to shorten the need to import many subpackages, say of scipy, constantly with statements such as import scipy.linalg, scipy.fftpack, scipy.etc... Instead, you can say: import scipy scipy.pkgload('linalg','fftpack',...) or scipy.pkgload() to load all of them in one call. If a name which doesn't exist in scipy's namespace is given, a warning is shown. Parameters ---------- *packages : arg-tuple the names (one or more strings) of all the modules one wishes to load into the top-level namespace. verbose= : integer verbosity level [default: -1]. verbose=-1 will suspend also warnings. force= : bool when True, force reloading loaded packages [default: False]. postpone= : bool when True, don't load packages [default: False] place(arr, mask, vals) Change elements of an array based on conditional and input values. Similar to np.copyto(arr, vals, where=mask), the difference is that place uses the first N elements of vals, where N is the number of True values in mask, while copyto uses the elements where mask is True. Note that extract does the exact opposite of place. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as a. vals : 1-D sequence Values to put into a. Only the first N elements are used, where N is the number of True values in mask. If vals is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- arr = np.arange(6).reshape(2, 3) np.place(arr, arr>2, [44, 55]) arr array([[ 0, 1, 2], [44, 55, 44]]) pmt(rate, nper, pv, fv=0, when='end') Compute the payment against loan principal plus interest. Given: * a present value, pv (e.g., an amount borrowed) * a future value, fv (e.g., 0) * an interest rate compounded once per period, of which there are * nper total * and (optional) specification of whether payment is made at the beginning (when = {'begin', 1}) or the end (when = {'end', 0}) of each period Return: the (fixed) periodic payment. Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value (default = 0) when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray Payment against loan plus interest. If all input is scalar, returns a scalar float. If any input is array_like, returns payment for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- The payment is computed by solving the equation:: fv + pv*(1 + rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 or, when rate == 0:: fv + pv + pmt * nper == 0 for pmt. Note that computing a monthly mortgage payment is only one use for this function. For example, pmt returns the periodic deposit one must make to achieve a specified future balance given an initial deposit, a fixed, periodically compounded interest rate, and the total number of periods. References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt Examples -------- What is the monthly payment needed to pay off a$200,000 loan in 15
years at an annual interest rate of 7.5%?

np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained today, a monthly payment of$1,854.02 would be required.  Note that this
example illustrates usage of fv having a default value of 0.

poly(seq_of_zeros)
Find the coefficients of a polynomial with the given sequence of roots.

Returns the coefficients of the polynomial whose leading coefficient
is one for the given sequence of zeros (multiple roots must be included
in the sequence as many times as their multiplicity; see Examples).
A square matrix (or array, which will be treated as a matrix) can also
be given, in which case the coefficients of the characteristic polynomial
of the matrix are returned.

Parameters
----------
seq_of_zeros : array_like, shape (N,) or (N, N)
A sequence of polynomial roots, or a square array or matrix object.

Returns
-------
c : ndarray
1D array of polynomial coefficients from highest to lowest degree:

c * x**(N) + c * x**(N-1) + ... + c[N-1] * x + c[N]
where c always equals 1.

Raises
------
ValueError
If input is the wrong shape (the input must be a 1-D or square
2-D array).

--------
polyval : Evaluate a polynomial at a point.
roots : Return the roots of a polynomial.
polyfit : Least squares polynomial fit.
poly1d : A one-dimensional polynomial class.

Notes
-----
Specifying the roots of a polynomial still leaves one degree of
freedom, typically represented by an undetermined leading
coefficient. _ In the case of this function, that coefficient -
the first one in the returned array - is always taken as one. (If
for some reason you have one other point, the only automatic way
presently to leverage that information is to use polyfit.)

The characteristic polynomial, :math:p_a(t), of an n-by-n
matrix **A** is given by

:math:p_a(t) = \mathrm{det}(t\, \mathbf{I} - \mathbf{A}),

where **I** is the n-by-n identity matrix. _

References
----------
..  M. Sullivan and M. Sullivan, III, "Algebra and Trignometry,
Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996.

..  G. Strang, "Linear Algebra and Its Applications, 2nd Edition,"

Examples
--------
Given a sequence of a polynomial's zeros:

np.poly((0, 0, 0)) # Multiple root example
array([1, 0, 0, 0])

The line above represents z**3 + 0*z**2 + 0*z + 0.

np.poly((-1./2, 0, 1./2))
array([ 1.  ,  0.  , -0.25,  0.  ])

The line above represents z**3 - z/4

np.poly((np.random.random(1.), 0, np.random.random(1.)))
array([ 1.        , -0.77086955,  0.08618131,  0.        ]) #random

Given a square array object:

P = np.array([[0, 1./3], [-1./2, 0]])
np.poly(P)
array([ 1.        ,  0.        ,  0.16666667])

Or a square matrix object:

np.poly(np.matrix(P))
array([ 1.        ,  0.        ,  0.16666667])

Note how in all cases the leading coefficient is always 1.

Find the sum of two polynomials.

Returns the polynomial resulting from the sum of two input polynomials.
Each input must be either a poly1d object or a 1D sequence of polynomial
coefficients, from highest to lowest degree.

Parameters
----------
a1, a2 : array_like or poly1d object
Input polynomials.

Returns
-------
out : ndarray or poly1d object
The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of
polynomial coefficients from highest to lowest degree.

--------
poly1d : A one-dimensional polynomial class.
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

Examples
--------
array([9, 6, 6])

Using poly1d objects:

p1 = np.poly1d([1, 2])
p2 = np.poly1d([9, 5, 4])
print p1
1 x + 2
print p2
2
9 x + 5 x + 4
2
9 x + 6 x + 6

polyder(p, m=1)
Return the derivative of the specified order of a polynomial.

Parameters
----------
p : poly1d or sequence
Polynomial to differentiate.
A sequence is interpreted as polynomial coefficients, see poly1d.
m : int, optional
Order of differentiation (default: 1)

Returns
-------
der : poly1d
A new polynomial representing the derivative.

--------
polyint : Anti-derivative of a polynomial.
poly1d : Class for one-dimensional polynomials.

Examples
--------
The derivative of the polynomial :math:x^3 + x^2 + x^1 + 1 is:

p = np.poly1d([1,1,1,1])
p2 = np.polyder(p)
p2
poly1d([3, 2, 1])

which evaluates to:

p2(2.)
17.0

We can verify this, approximating the derivative with
(f(x + h) - f(x))/h:

(p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

np.polyder(p, 2)
poly1d([6, 2])
np.polyder(p, 3)
poly1d()
np.polyder(p, 4)
poly1d([ 0.])

polydiv(u, v)
Returns the quotient and remainder of polynomial division.

The input arrays are the coefficients (including any coefficients
equal to zero) of the "numerator" (dividend) and "denominator"
(divisor) polynomials, respectively.

Parameters
----------
u : array_like or poly1d
Dividend polynomial's coefficients.

v : array_like or poly1d
Divisor polynomial's coefficients.

Returns
-------
q : ndarray
Coefficients, including those equal to zero, of the quotient.
r : ndarray
Coefficients, including those equal to zero, of the remainder.

--------
poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub,
polyval

Notes
-----
Both u and v must be 0-d or 1-d (ndim = 0 or 1), but u.ndim need
not equal v.ndim. In other words, all four possible combinations -
u.ndim = v.ndim = 0, u.ndim = v.ndim = 1,
u.ndim = 1, v.ndim = 0, and u.ndim = 0, v.ndim = 1 - work.

Examples
--------
.. math:: \frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25

x = np.array([3.0, 5.0, 2.0])
y = np.array([2.0, 1.0])
np.polydiv(x, y)
(array([ 1.5 ,  1.75]), array([ 0.25]))

polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Fit a polynomial p(x) = p * x**deg + ... + p[deg] of degree deg
to points (x, y). Returns a vector of coefficients p that minimises
the squared error.

Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points (x[i], y[i]).
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
Degree of the fitting polynomial
rcond : float, optional
Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.
full : bool, optional
Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (M,), optional
weights to apply to the y-coordinates of the sample points.
cov : bool, optional
Return the estimate and the covariance matrix of the estimate
If full is True, then cov is not returned.

Returns
-------
p : ndarray, shape (M,) or (M, K)
Polynomial coefficients, highest power first.  If y was 2-D, the
coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond :
Present only if full = True.  Residuals of the least-squares fit,
the effective rank of the scaled Vandermonde coefficient matrix,
its singular values, and the specified value of rcond. For more
details, see linalg.lstsq.

V : ndarray, shape (M,M) or (M,M,K)
Present only if full = False and cov=True.  The covariance
matrix of the polynomial coefficient estimates.  The diagonal of
this matrix are the variance estimates for each coefficient.  If y
is a 2-D array, then the covariance matrix for the k-th data set
are in V[:,:,k]

Warns
-----
RankWarning
The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if full = False.

The warnings can be turned off by

import warnings
warnings.simplefilter('ignore', np.RankWarning)

--------
polyval : Computes polynomial values.
linalg.lstsq : Computes a least-squares fit.
scipy.interpolate.UnivariateSpline : Computes spline fits.

Notes
-----
The solution minimizes the squared error

.. math ::
E = \sum_{j=0}^k |p(x_j) - y_j|^2

in the equations::

x**n * p + ... + x * p[n-1] + p[n] = y
x**n * p + ... + x * p[n-1] + p[n] = y
...
x[k]**n * p + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly
conditioned. This implies that the best fit is not well-defined due
to numerical error. The results may be improved by lowering the polynomial
degree or by replacing x by x - x.mean(). The rcond parameter
can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular
values can add numerical noise to the result.

Note that fitting polynomial coefficients is inherently badly conditioned
when the degree of the polynomial is large or the interval of sample points
is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good
alternative.

References
----------
..  Wikipedia, "Curve fitting",
http://en.wikipedia.org/wiki/Curve_fitting
..  Wikipedia, "Polynomial interpolation",
http://en.wikipedia.org/wiki/Polynomial_interpolation

Examples
--------
x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
z = np.polyfit(x, y, 3)
z
array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254])

It is convenient to use poly1d objects for dealing with polynomials:

p = np.poly1d(z)
p(0.5)
0.6143849206349179
p(3.5)
-0.34732142857143039
p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
p30(4)
-0.80000000000000204
p30(5)
-0.99999999999999445
p30(4.5)
-0.10547061179440398

Illustration:

import matplotlib.pyplot as plt
xp = np.linspace(-2, 6, 100)
_ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
plt.ylim(-2,2)
(-2, 2)
plt.show()

polyint(p, m=1, k=None)
Return an antiderivative (indefinite integral) of a polynomial.

The returned order m antiderivative P of polynomial p satisfies
:math:\frac{d^m}{dx^m}P(x) = p(x) and is defined up to m - 1
integration constants k. The constants determine the low-order
polynomial part

.. math:: \frac{k_{m-1}}{0!} x^0 + \ldots + \frac{k_0}{(m-1)!}x^{m-1}

of P so that :math:P^{(j)}(0) = k_{m-j-1}.

Parameters
----------
p : array_like or poly1d
Polynomial to differentiate.
A sequence is interpreted as polynomial coefficients, see poly1d.
m : int, optional
Order of the antiderivative. (Default: 1)
k : list of m scalars or scalar, optional
Integration constants. They are given in the order of integration:
those corresponding to highest-order terms come first.

If None (default), all constants are assumed to be zero.
If m = 1, a single scalar can be given instead of a list.

--------
polyder : derivative of a polynomial
poly1d.integ : equivalent method

Examples
--------
The defining property of the antiderivative:

p = np.poly1d([1,1,1])
P = np.polyint(p)
P
poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ])
np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

P = np.polyint(p, 3)
P(0)
0.0
np.polyder(P)(0)
0.0
np.polyder(P, 2)(0)
0.0
P = np.polyint(p, 3, k=[6,5,3])
P
poly1d([ 0.01666667,  0.04166667,  0.16666667,  3. ,  5. ,  3. ])

Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:

np.polyder(P, 2)(0)
6.0
np.polyder(P, 1)(0)
5.0
P(0)
3.0

polymul(a1, a2)
Find the product of two polynomials.

Finds the polynomial resulting from the multiplication of the two input
polynomials. Each input must be either a poly1d object or a 1D sequence
of polynomial coefficients, from highest to lowest degree.

Parameters
----------
a1, a2 : array_like or poly1d object
Input polynomials.

Returns
-------
out : ndarray or poly1d object
The polynomial resulting from the multiplication of the inputs. If
either inputs is a poly1d object, then the output is also a poly1d
object. Otherwise, it is a 1D array of polynomial coefficients from
highest to lowest degree.

--------
poly1d : A one-dimensional polynomial class.
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub,
polyval
convolve : Array convolution. Same output as polymul, but has parameter
for overlap mode.

Examples
--------
np.polymul([1, 2, 3], [9, 5, 1])
array([ 9, 23, 38, 17,  3])

Using poly1d objects:

p1 = np.poly1d([1, 2, 3])
p2 = np.poly1d([9, 5, 1])
print p1
2
1 x + 2 x + 3
print p2
2
9 x + 5 x + 1
print np.polymul(p1, p2)
4      3      2
9 x + 23 x + 38 x + 17 x + 3

polysub(a1, a2)
Difference (subtraction) of two polynomials.

Given two polynomials a1 and a2, returns a1 - a2.
a1 and a2 can be either array_like sequences of the polynomials'
coefficients (including coefficients equal to zero), or poly1d objects.

Parameters
----------
a1, a2 : array_like or poly1d
Minuend and subtrahend polynomials, respectively.

Returns
-------
out : ndarray or poly1d
Array or poly1d object of the difference polynomial's coefficients.

--------

Examples
--------
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

np.polysub([2, 10, -2], [3, 10, -4])
array([-1,  0,  2])

polyval(p, x)
Evaluate a polynomial at specific values.

If p is of length N, this function returns the value:

p*x**(N-1) + p*x**(N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence, then p(x) is returned for each element of x.
If x is another polynomial then the composite polynomial p(x(t))
is returned.

Parameters
----------
p : array_like or poly1d object
1D array of polynomial coefficients (including coefficients equal
to zero) from highest degree to the constant term, or an
instance of poly1d.
x : array_like or poly1d object
A number, a 1D array of numbers, or an instance of poly1d, "at"
which to evaluate p.

Returns
-------
values : ndarray or poly1d
If x is a poly1d instance, the result is the composition of the two
polynomials, i.e., x is "substituted" in p and the simplified
result is returned. In addition, the type of x - array_like or
poly1d - governs the type of the output: x array_like => values
array_like, x a poly1d object => values is also.

--------
poly1d: A polynomial class.

Notes
-----
Horner's scheme _ is used to evaluate the polynomial. Even so,
for polynomials of high degree the values may be inaccurate due to
rounding errors. Use carefully.

References
----------
..  I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand
Reinhold Co., 1985, pg. 720.

Examples
--------
np.polyval([3,0,1], 5)  # 3 * 5**2 + 0 * 5**1 + 1
76
np.polyval([3,0,1], np.poly1d(5))
poly1d([ 76.])
np.polyval(np.poly1d([3,0,1]), 5)
76
np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([ 76.])

ppmt(rate, per, nper, pv, fv=0.0, when='end')
Compute the payment against loan principal.

Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes.  The per is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))

--------
pmt, pv, ipmt

prod(a, axis=None, dtype=None, out=None, keepdims=False)
Return the product of array elements over a given axis.

Parameters
----------
a : array_like
Input data.
axis : None or int or tuple of ints, optional
Axis or axes along which a product is performed.
The default (axis = None) is perform a product over all
the dimensions of the input array. axis may be negative, in
which case it counts from the last to the first axis.

If this is a tuple of ints, a product is performed on multiple
axes, instead of a single axis or all the axes as before.
dtype : data-type, optional
The data-type of the returned array, as well as of the accumulator
in which the elements are multiplied.  By default, if a is of
integer type, dtype is the default platform integer. (Note: if
the type of a is unsigned, then so is dtype.)  Otherwise,
the dtype is the same as that of a.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output, but the type of the
output values will be cast if necessary.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

Returns
-------
product_along_axis : ndarray, see dtype parameter above.
An array shaped as a but with the specified axis removed.
Returns a reference to out if specified.

--------
ndarray.prod : equivalent method
numpy.doc.ufuncs : Section "Output arguments"

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.  That means that, on a 32-bit platform:

x = np.array([536870910, 536870910, 536870910, 536870910])
np.prod(x) #random
16

The product of an empty array is the neutral element 1:

np.prod([])
1.0

Examples
--------
By default, calculate the product of all elements:

np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

np.prod([[1.,2.],[3.,4.]])
24.0

But we can also specify the axis over which to multiply:

np.prod([[1.,2.],[3.,4.]], axis=1)
array([  2.,  12.])

If the type of x is unsigned, then the output type is
the unsigned platform integer:

x = np.array([1, 2, 3], dtype=np.uint8)
np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type
is the default platform integer:

x = np.array([1, 2, 3], dtype=np.int8)
np.prod(x).dtype == np.int
True

product(a, axis=None, dtype=None, out=None, keepdims=False)
Return the product of array elements over a given axis.

--------
prod : equivalent function; see for details.

promote_types(...)
promote_types(type1, type2)

Returns the data type with the smallest size and smallest scalar
kind to which both type1 and type2 may be safely cast.
The returned data type is always in native byte order.

This function is symmetric and associative.

Parameters
----------
type1 : dtype or dtype specifier
First data type.
type2 : dtype or dtype specifier
Second data type.

Returns
-------
out : dtype
The promoted data type.

Notes
-----

Starting in NumPy 1.9, promote_types function now returns a valid string
length when given an integer or float dtype as one argument and a string
dtype as another argument. Previously it always returned the input string
dtype, even if it wasn't long enough to store the max integer/float value
converted to a string.

--------
result_type, dtype, can_cast

Examples
--------
np.promote_types('f4', 'f8')
dtype('float64')

np.promote_types('i8', 'f4')
dtype('float64')

np.promote_types('>i8', '<c8')
dtype('complex128')

np.promote_types('i4', 'S8')
dtype('S11')

ptp(a, axis=None, out=None)
Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for 'peak to peak'.

Parameters
----------
a : array_like
Input values.
axis : int, optional
Axis along which to find the peaks.  By default, flatten the
array.
out : array_like
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type of the output values will be cast if necessary.

Returns
-------
ptp : ndarray
A new array holding the result, unless out was
specified, in which case a reference to out is returned.

Examples
--------
x = np.arange(4).reshape((2,2))
x
array([[0, 1],
[2, 3]])

np.ptp(x, axis=0)
array([2, 2])

np.ptp(x, axis=1)
array([1, 1])

put(a, ind, v, mode='raise')
Replaces specified elements of an array with given values.

The indexing works on the flattened target array. put is roughly
equivalent to:

::

a.flat[ind] = v

Parameters
----------
a : ndarray
Target array.
ind : array_like
Target indices, interpreted as integers.
v : array_like
Values to place in a at target indices. If v is shorter than
ind it will be repeated as necessary.
mode : {'raise', 'wrap', 'clip'}, optional
Specifies how out-of-bounds indices will behave.

* 'raise' -- raise an error (default)
* 'wrap' -- wrap around
* 'clip' -- clip to the range

'clip' mode means that all indices that are too large are replaced
by the index that addresses the last element along that axis. Note
that this disables indexing with negative numbers.

--------

Examples
--------
a = np.arange(5)
np.put(a, [0, 2], [-44, -55])
a
array([-44,   1, -55,   3,   4])

a = np.arange(5)
np.put(a, 22, -5, mode='clip')
a
array([ 0,  1,  2,  3, -5])

Changes elements of an array based on conditional and input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.

If values is not the same size as a and mask then it will repeat.
This gives behavior different from a[mask] = values.

Parameters
----------
a : array_like
Target array.
Boolean mask array. It has to be the same shape as a.
values : array_like
Values to put into a where mask is True. If values is smaller
than a it will be repeated.

--------
place, put, take, copyto

Examples
--------
x = np.arange(6).reshape(2, 3)
x
array([[ 0,  1,  2],
[ 9, 16, 25]])

If values is smaller than a it is repeated:

x = np.arange(5)
x
array([  0,   1, -33, -44, -33])

pv(rate, nper, pmt, fv=0.0, when='end')
Compute the present value.

Given:
* a future value, fv
* an interest rate compounded once per period, of which
there are
* nper total
* a (fixed) payment, pmt, paid either
* at the beginning (when = {'begin', 1}) or the end
(when = {'end', 0}) of each period

Return:
the value now

Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pmt : array_like
Payment
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))

Returns
-------
out : ndarray, float
Present value of a series of payments or investments.

Notes
-----
The present value is computed by solving the equation::

fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when rate = 0::

fv + pv + pmt * nper = 0

for pv, which is then returned.

References
----------
.. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt

Examples
--------
What is the present value (e.g., the initial investment)
of an investment that needs to total $15692.93 after 10 years of saving$100 every month?  Assume the
interest rate is 5% (annually) compounded monthly.

np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819

By convention, the negative sign represents cash flow out
(i.e., money not available today).  Thus, to end up with
$15,692.93 in 10 years saving$100 a month at 5% annual
interest, one's initial deposit should also be $100. If any input is array_like, pv returns an array of equal shape. Let's compare different interest rates in the example above: a = np.array((0.05, 0.04, 0.03))/12 np.pv(a, 10*12, -100, 15692.93) array([ -100.00067132, -649.26771385, -1273.78633713]) So, to end up with the same$15692.93 under the same $100 per month "savings plan," for annual interest rates of 4% and 3%, one would need initial investments of$649.27 and 1273.79, respectively. rank(a) Return the number of dimensions of an array. If a is not already an array, a conversion is attempted. Scalars are zero dimensional. .. note:: This function is deprecated in NumPy 1.9 to avoid confusion with numpy.linalg.matrix_rank. The ndim attribute or function should be used instead. Parameters ---------- a : array_like Array whose number of dimensions is desired. If a is not an array, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in the array. See Also -------- ndim : equivalent function ndarray.ndim : equivalent property shape : dimensions of array ndarray.shape : dimensions of array Notes ----- In the old Numeric package, rank was the term used for the number of dimensions, but in Numpy ndim is used instead. Examples -------- np.rank([1,2,3]) 1 np.rank(np.array([[1,2,3],[4,5,6]])) 2 np.rank(1) 0 rate(nper, pmt, pv, fv, when='end', guess=0.1, tol=1e-06, maxiter=100) Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for rate. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt ravel(a, order='C') Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array will be returned for a masked array input) Parameters ---------- a : array_like Input array. The elements in a are read in the order specified by order, and packed as a 1-D array. order : {'C','F', 'A', 'K'}, optional The elements of a are read using this index order. 'C' means to index the elements in row-major, C-style order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to index the elements in column-major, Fortran-style order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of axis indexing. 'A' means to read the elements in Fortran-like index order if a is Fortran *contiguous* in memory, C-like order otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used. Returns ------- y : array_like If a is a matrix, y is a 1-D ndarray, otherwise y is an array of the same subtype as a. The shape of the returned array is (a.size,). Matrices are special cased for backward compatibility. See Also -------- ndarray.flat : 1-D iterator over an array. ndarray.flatten : 1-D array copy of the elements of an array in row-major order. ndarray.reshape : Change the shape of an array without changing its data. Notes ----- In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-style index ordering. When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable. Examples -------- It is equivalent to reshape(-1, order=order). x = np.array([[1, 2, 3], [4, 5, 6]]) print np.ravel(x) [1 2 3 4 5 6] print x.reshape(-1) [1 2 3 4 5 6] print np.ravel(x, order='F') [1 4 2 5 3 6] When order is 'A', it will preserve the array's 'C' or 'F' ordering: print np.ravel(x.T) [1 4 2 5 3 6] print np.ravel(x.T, order='A') [1 2 3 4 5 6] When order is 'K', it will preserve orderings that are neither 'C' nor 'F', but won't reverse axes: a = np.arange(3)[::-1]; a array([2, 1, 0]) a.ravel(order='C') array([2, 1, 0]) a.ravel(order='K') array([2, 1, 0]) a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a array([[[ 0, 2, 4], [ 1, 3, 5]], [[ 6, 8, 10], [ 7, 9, 11]]]) a.ravel(order='C') array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11]) a.ravel(order='K') array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) ravel_multi_index(...) ravel_multi_index(multi_index, dims, mode='raise', order='C') Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index. Parameters ---------- multi_index : tuple of array_like A tuple of integer arrays, one array for each dimension. dims : tuple of ints The shape of array into which the indices from multi_index apply. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices are handled. Can specify either one mode or a tuple of modes, one mode per index. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range In 'clip' mode, a negative index which would normally wrap will clip to 0 instead. order : {'C', 'F'}, optional Determines whether the multi-index should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order. Returns ------- raveled_indices : ndarray An array of indices into the flattened version of an array of dimensions dims. See Also -------- unravel_index Notes ----- .. versionadded:: 1.6.0 Examples -------- arr = np.array([[3,6,6],[4,5,1]]) np.ravel_multi_index(arr, (7,6)) array([22, 41, 37]) np.ravel_multi_index(arr, (7,6), order='F') array([31, 41, 13]) np.ravel_multi_index(arr, (4,6), mode='clip') array([22, 23, 19]) np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) array([12, 13, 13]) np.ravel_multi_index((3,1,4,1), (6,7,8,9)) 1621 real(val) Return the real part of the elements of the array. Parameters ---------- val : array_like Input array. Returns ------- out : ndarray Output array. If val is real, the type of val is used for the output. If val has complex elements, the returned type is float. See Also -------- real_if_close, imag, angle Examples -------- a = np.array([1+2j, 3+4j, 5+6j]) a.real array([ 1., 3., 5.]) a.real = 9 a array([ 9.+2.j, 9.+4.j, 9.+6.j]) a.real = np.array([9, 8, 7]) a array([ 9.+2.j, 8.+4.j, 7.+6.j]) real_if_close(a, tol=100) If complex input returns a real array if complex parts are close to zero. "Close to zero" is defined as tol * (machine epsilon of the type for a). Parameters ---------- a : array_like Input array. tol : float Tolerance in machine epsilons for the complex part of the elements in the array. Returns ------- out : ndarray If a is real, the type of a is used for the output. If a has complex elements, the returned type is float. See Also -------- real, imag, angle Notes ----- Machine epsilon varies from machine to machine and between data types but Python floats on most platforms have a machine epsilon equal to 2.2204460492503131e-16. You can use 'np.finfo(np.float).eps' to print out the machine epsilon for floats. Examples -------- np.finfo(np.float).eps 2.2204460492503131e-16 np.real_if_close([2.1 + 4e-14j], tol=1000) array([ 2.1]) np.real_if_close([2.1 + 4e-13j], tol=1000) array([ 2.1 +4.00000000e-13j]) recfromcsv(fname, **kwargs) Load ASCII data stored in a comma-separated file. The returned array is a record array (if usemask=False, see recarray) or a masked record array (if usemask=True, see ma.mrecords.MaskedRecords). Parameters ---------- fname, kwargs : For a description of input parameters, see genfromtxt. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, dtype is None, which means that the data-type of the output array will be determined from the data. recfromtxt(fname, **kwargs) Load ASCII data from a file and return it in a record array. If usemask=False a standard recarray is returned, if usemask=True a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see genfromtxt. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, dtype is None, which means that the data-type of the output array will be determined from the data. repeat(a, repeats, axis=None) Repeat elements of an array. Parameters ---------- a : array_like Input array. repeats : int or array of ints The number of repetitions for each element. repeats is broadcasted to fit the shape of the given axis. axis : int, optional The axis along which to repeat values. By default, use the flattened input array, and return a flat output array. Returns ------- repeated_array : ndarray Output array which has the same shape as a, except along the given axis. See Also -------- tile : Tile an array. Examples -------- x = np.array([[1,2],[3,4]]) np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) np.repeat(x, 3, axis=1) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) np.repeat(x, [1, 2], axis=0) array([[1, 2], [3, 4], [3, 4]]) require(a, dtype=None, requirements=None) Return an ndarray of the provided type that satisfies requirements. This function is useful to be sure that an array with the correct flags is returned for passing to compiled code (perhaps through ctypes). Parameters ---------- a : array_like The object to be converted to a type-and-requirement-satisfying array. dtype : data-type The required data-type. If None preserve the current dtype. If your application requires the data to be in native byteorder, include a byteorder specification as a part of the dtype specification. requirements : str or list of str The requirements list can be any of the following * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array * 'ALIGNED' ('A') - ensure a data-type aligned array * 'WRITEABLE' ('W') - ensure a writable array * 'OWNDATA' ('O') - ensure an array that owns its own data * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass See Also -------- asarray : Convert input to an ndarray. asanyarray : Convert to an ndarray, but pass through ndarray subclasses. ascontiguousarray : Convert input to a contiguous array. asfortranarray : Convert input to an ndarray with column-major memory order. ndarray.flags : Information about the memory layout of the array. Notes ----- The returned array will be guaranteed to have the listed requirements by making a copy if needed. Examples -------- x = np.arange(6).reshape(2,3) x.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : False WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F']) y.flags C_CONTIGUOUS : False F_CONTIGUOUS : True OWNDATA : True WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False reshape(a, newshape, order='C') Gives a new shape to an array without changing its data. Parameters ---------- a : array_like Array to be reshaped. newshape : int or tuple of ints The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions. order : {'C', 'F', 'A'}, optional Read the elements of a using this index order, and place the elements into the reshaped array using this index order. 'C' means to read / write the elements using C-like index order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to read / write the elements using Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of indexing. 'A' means to read / write the elements in Fortran-like index order if a is Fortran *contiguous* in memory, C-like order otherwise. Returns ------- reshaped_array : ndarray This will be a new view object if possible; otherwise, it will be a copy. Note there is no guarantee of the *memory layout* (C- or Fortran- contiguous) of the returned array. See Also -------- ndarray.reshape : Equivalent method. Notes ----- It is not always possible to change the shape of an array without copying the data. If you want an error to be raise if the data is copied, you should assign the new shape to the shape attribute of the array:: a = np.zeros((10, 2)) # A transpose make the array non-contiguous b = a.T # Taking a view makes it possible to modify the shape without modifying # the initial object. c = b.view() c.shape = (20) AttributeError: incompatible shape for a non-contiguous array The order keyword gives the index ordering both for *fetching* the values from a, and then *placing* the values into the output array. For example, let's say you have an array: a = np.arange(6).reshape((3, 2)) a array([[0, 1], [2, 3], [4, 5]]) You can think of reshaping as first raveling the array (using the given index order), then inserting the elements from the raveled array into the new array using the same kind of index ordering as was used for the raveling. np.reshape(a, (2, 3)) # C-like index ordering array([[0, 1, 2], [3, 4, 5]]) np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape array([[0, 1, 2], [3, 4, 5]]) np.reshape(a, (2, 3), order='F') # Fortran-like index ordering array([[0, 4, 3], [2, 1, 5]]) np.reshape(np.ravel(a, order='F'), (2, 3), order='F') array([[0, 4, 3], [2, 1, 5]]) Examples -------- a = np.array([[1,2,3], [4,5,6]]) np.reshape(a, 6) array([1, 2, 3, 4, 5, 6]) np.reshape(a, 6, order='F') array([1, 4, 2, 5, 3, 6]) np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]]) resize(a, new_shape) Return a new array with the specified shape. If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a. Parameters ---------- a : array_like Array to be resized. new_shape : int or tuple of int Shape of resized array. Returns ------- reshaped_array : ndarray The new array is formed from the data in the old array, repeated if necessary to fill out the required number of elements. The data are repeated in the order that they are stored in memory. See Also -------- ndarray.resize : resize an array in-place. Examples -------- a=np.array([[0,1],[2,3]]) np.resize(a,(2,3)) array([[0, 1, 2], [3, 0, 1]]) np.resize(a,(1,4)) array([[0, 1, 2, 3]]) np.resize(a,(2,4)) array([[0, 1, 2, 3], [0, 1, 2, 3]]) restoredot() Restore dot, vdot, and innerproduct to the default non-BLAS implementations. Typically, the user will only need to call this when troubleshooting and installation problem, reproducing the conditions of a build without an accelerated BLAS, or when being very careful about benchmarking linear algebra operations. .. note:: Deprecated in Numpy 1.10 The cblas functions have been integrated into the multarray module and restoredot now longer does anything. It will be removed in Numpy 1.11.0. See Also -------- alterdot : restoredot undoes the effects of alterdot. result_type(...) result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy type promotion rules to the arguments. Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences. When both scalars and arrays are used, the array's type takes precedence and the actual value of the scalar is taken into account. For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output. If the 3 is a 32-bit integer, the NumPy rules indicate it can't convert losslessly into a 32-bit float, so a 64-bit float should be the result type. By examining the value of the constant, '3', we see that it fits in an 8-bit integer, which can be cast losslessly into the 32-bit float. Parameters ---------- arrays_and_dtypes : list of arrays and dtypes The operands of some operation whose result type is needed. Returns ------- out : dtype The result type. See also -------- dtype, promote_types, min_scalar_type, can_cast Notes ----- .. versionadded:: 1.6.0 The specific algorithm used is as follows. Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex) the maximum kind of all the arrays and the scalars are. If there are only scalars or the maximum category of the scalars is higher than the maximum category of the arrays, the data types are combined with :func:promote_types to produce the return value. Otherwise, min_scalar_type is called on each array, and the resulting data types are all combined with :func:promote_types to produce the return value. The set of int values is not a subset of the uint values for types with the same number of bits, something not reflected in :func:min_scalar_type, but handled as a special case in result_type. Examples -------- np.result_type(3, np.arange(7, dtype='i1')) dtype('int8') np.result_type('i4', 'c8') dtype('complex128') np.result_type(3.0, -2) dtype('float64') roll(a, shift, axis=None) Roll array elements along a given axis. Elements that roll beyond the last position are re-introduced at the first. Parameters ---------- a : array_like Input array. shift : int The number of places by which elements are shifted. axis : int, optional The axis along which elements are shifted. By default, the array is flattened before shifting, after which the original shape is restored. Returns ------- res : ndarray Output array, with the same shape as a. See Also -------- rollaxis : Roll the specified axis backwards, until it lies in a given position. Examples -------- x = np.arange(10) np.roll(x, 2) array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) x2 = np.reshape(x, (2,5)) x2 array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) np.roll(x2, 1) array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]]) np.roll(x2, 1, axis=0) array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]]) np.roll(x2, 1, axis=1) array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]]) rollaxis(a, axis, start=0) Roll the specified axis backwards, until it lies in a given position. Parameters ---------- a : ndarray Input array. axis : int The axis to roll backwards. The positions of the other axes do not change relative to one another. start : int, optional The axis is rolled until it lies before this position. The default, 0, results in a "complete" roll. Returns ------- res : ndarray For Numpy >= 1.10 a view of a is always returned. For earlier Numpy versions a view of a is returned only if the order of the axes is changed, otherwise the input array is returned. See Also -------- roll : Roll the elements of an array by a number of positions along a given axis. Examples -------- a = np.ones((3,4,5,6)) np.rollaxis(a, 3, 1).shape (3, 6, 4, 5) np.rollaxis(a, 2).shape (5, 3, 4, 6) np.rollaxis(a, 1, 4).shape (3, 5, 6, 4) roots(p) Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array p are coefficients of a polynomial. If the length of p is n+1 then the polynomial is described by:: p * x**n + p * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError When p cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix _. References ---------- ..  R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- coeff = [3.2, 2, 1] np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) rot90(m, k=1) Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- m = np.array([[1,2],[3,4]], int) m array([[1, 2], [3, 4]]) np.rot90(m) array([[2, 4], [1, 3]]) np.rot90(m, 2) array([[4, 3], [2, 1]]) round_(a, decimals=0, out=None) Round an array to the given number of decimals. Refer to around for full documentation. See Also -------- around : equivalent function row_stack = vstack(tup) Stack arrays in sequence vertically (row wise). Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by vsplit. Parameters ---------- tup : sequence of ndarrays Tuple containing arrays to be stacked. The arrays must have the same shape along all but the first axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). dstack : Stack arrays in sequence depth wise (along third dimension). concatenate : Join a sequence of arrays along an existing axis. vsplit : Split array into a list of multiple sub-arrays vertically. Notes ----- Equivalent to np.concatenate(tup, axis=0) if tup contains arrays that are at least 2-dimensional. Examples -------- a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) a = np.array([, , ]) b = np.array([, , ]) np.vstack((a,b)) array([, , , , , ]) safe_eval(source) Protected string evaluation. Evaluate a string containing a Python literal expression without allowing the execution of arbitrary non-literal code. Parameters ---------- source : str The string to evaluate. Returns ------- obj : object The result of evaluating source. Raises ------ SyntaxError If the code has invalid Python syntax, or if it contains non-literal code. Examples -------- np.safe_eval('1') 1 np.safe_eval('[1, 2, 3]') [1, 2, 3] np.safe_eval('{"foo": ("bar", 10.0)}') {'foo': ('bar', 10.0)} np.safe_eval('import os') Traceback (most recent call last): ... SyntaxError: invalid syntax np.safe_eval('open("/home/user/.ssh/id_dsa").read()') Traceback (most recent call last): ... SyntaxError: Unsupported source construct: compiler.ast.CallFunc save(file, arr, allow_pickle=True, fix_imports=True) Save an array to a binary file in NumPy .npy format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a .npy extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If fix_imports is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a .npz archive savetxt, load Notes ----- For a description of the .npy format, see the module docstring of numpy.lib.format or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- from tempfile import TemporaryFile outfile = TemporaryFile() x = np.arange(10) np.save(outfile, x) outfile.seek(0) # Only needed here to simulate closing & reopening file np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ') Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in .gz, the file is automatically saved in compressed gzip format. loadtxt understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case delimiter is ignored. For complex X, the legal options for fmt are: a) a single specifier, fmt='%.4e', resulting in numbers formatted like ' (%s+%sj)' % (fmt, fmt) b) a full string specifying every real and imaginary part, e.g. ' %.4e %+.4j %.4e %+.4j %.4e %+.4j' for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. ['%.3e + %.3ej', '(%.15e%+.15ej)'] for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the header and footer strings, to mark them as comments. Default: '# ', as expected by e.g. numpy.loadtxt. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy .npy format savez : Save several arrays into an uncompressed .npz archive savez_compressed : Save several arrays into a compressed .npz archive Notes ----- Further explanation of the fmt parameter (%[flag]width[.precision]specifier): flags: - : left justify + : Forces to precede result with + or -. 0 : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. d,i,o,x), the minimum number of digits. - For e, E and f specifiers, the number of digits to print after the decimal point. - For g and G, the maximum number of significant digits. - For s, the maximum number of characters. specifiers: c : character d or i : signed decimal integer e or E : scientific notation with e or E. f : decimal floating point g,G : use the shorter of e,E or f o : signed octal s : string of characters u : unsigned decimal integer x,X : unsigned hexadecimal integer This explanation of fmt is not complete, for an exhaustive specification see _. References ---------- ..  Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>_, Python Documentation. Examples -------- x = y = z = np.arange(0.0,5.0,1.0) np.savetxt('test.out', x, delimiter=',') # X is an array np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation savez(file, *args, **kwds) Save several arrays into a single file in uncompressed .npz format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the .npz file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the .npz extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside savez, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed .npz archive Notes ----- The .npz file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in .npy format. For a description of the .npy format, see numpy.lib.format or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves. Examples -------- from tempfile import TemporaryFile outfile = TemporaryFile() x = np.arange(10) y = np.sin(x) Using savez with \*args, the arrays are saved with default names. np.savez(outfile, x, y) outfile.seek(0) # Only needed here to simulate closing & reopening file npzfile = np.load(outfile) npzfile.files ['arr_1', 'arr_0'] npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using savez with \**kwds, the arrays are saved with the keyword names. outfile = TemporaryFile() np.savez(outfile, x=x, y=y) outfile.seek(0) npzfile = np.load(outfile) npzfile.files ['y', 'x'] npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) savez_compressed(file, *args, **kwds) Save several arrays into a single file in compressed .npz format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format numpy.load : Load the files created by savez_compressed. sctype2char(sctype) Return the string representation of a scalar dtype. Parameters ---------- sctype : scalar dtype or object If a scalar dtype, the corresponding string character is returned. If an object, sctype2char tries to infer its scalar type and then return the corresponding string character. Returns ------- typechar : str The string character corresponding to the scalar type. Raises ------ ValueError If sctype is an object for which the type can not be inferred. See Also -------- obj2sctype, issctype, issubsctype, mintypecode Examples -------- for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]: print np.sctype2char(sctype) l d D S O x = np.array([1., 2-1.j]) np.sctype2char(x) 'D' np.sctype2char(list) 'O' searchsorted(a, v, side='left', sorter=None) Find indices where elements should be inserted to maintain order. Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the indices, the order of a would be preserved. Parameters ---------- a : 1-D array_like Input array. If sorter is None, then it must be sorted in ascending order, otherwise sorter must be an array of indices that sort it. v : array_like Values to insert into a. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a). sorter : 1-D array_like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. .. versionadded:: 1.7.0 Returns ------- indices : array of ints Array of insertion points with the same shape as v. See Also -------- sort : Return a sorted copy of an array. histogram : Produce histogram from 1-D data. Notes ----- Binary search is used to find the required insertion points. As of Numpy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced sort order is documented in sort. Examples -------- np.searchsorted([1,2,3,4,5], 3) 2 np.searchsorted([1,2,3,4,5], 3, side='right') 3 np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) array([0, 5, 1, 2]) select(condlist, choicelist, default=0) Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in choicelist the output elements are taken. When multiple conditions are satisfied, the first one encountered in condlist is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as condlist. default : scalar, optional The element inserted in output when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in choicelist where the m-th element of the corresponding array in condlist is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- x = np.arange(10) condlist = [x<3, x>5] choicelist = [x, x**2] np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) set_numeric_ops(...) set_numeric_ops(op1=func1, op2=func2, ...) Set numerical operators for array objects. Parameters ---------- op1, op2, ... : callable Each op = func pair describes an operator to be replaced. For example, add = lambda x, y: np.add(x, y) % 5 would replace addition by modulus 5 addition. Returns ------- saved_ops : list of callables A list of all operators, stored before making replacements. Notes ----- .. WARNING:: Use with care! Incorrect usage may lead to memory errors. A function replacing an operator cannot make use of that operator. For example, when replacing add, you may not use +. Instead, directly call ufuncs. Examples -------- def add_mod5(x, y): return np.add(x, y) % 5 ... old_funcs = np.set_numeric_ops(add=add_mod5) x = np.arange(12).reshape((3, 4)) x + x array([[0, 2, 4, 1], [3, 0, 2, 4], [1, 3, 0, 2]]) ignore = np.set_numeric_ops(**old_funcs) # restore operators set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None) Set printing options. These options determine the way floating point numbers, arrays and other NumPy objects are displayed. Parameters ---------- precision : int, optional Number of digits of precision for floating point output (default 8). threshold : int, optional Total number of array elements which trigger summarization rather than full repr (default 1000). edgeitems : int, optional Number of array items in summary at beginning and end of each dimension (default 3). linewidth : int, optional The number of characters per line for the purpose of inserting line breaks (default 75). suppress : bool, optional Whether or not suppress printing of small floating point values using scientific notation (default False). nanstr : str, optional String representation of floating point not-a-number (default nan). infstr : str, optional String representation of floating point infinity (default inf). formatter : dict of callables, optional If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are:: - 'bool' - 'int' - 'timedelta' : a numpy.timedelta64 - 'datetime' : a numpy.datetime64 - 'float' - 'longfloat' : 128-bit floats - 'complexfloat' - 'longcomplexfloat' : composed of two 128-bit floats - 'numpy_str' : types numpy.string_ and numpy.unicode_ - 'str' : all other strings Other keys that can be used to set a group of types at once are:: - 'all' : sets all types - 'int_kind' : sets 'int' - 'float_kind' : sets 'float' and 'longfloat' - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' - 'str_kind' : sets 'str' and 'numpystr' See Also -------- get_printoptions, set_string_function, array2string Notes ----- formatter is always reset with a call to set_printoptions. Examples -------- Floating point precision can be set: np.set_printoptions(precision=4) print np.array([1.123456789]) [ 1.1235] Long arrays can be summarised: np.set_printoptions(threshold=5) print np.arange(10) [0 1 2 ..., 7 8 9] Small results can be suppressed: eps = np.finfo(float).eps x = np.arange(4.) x**2 - (x + eps)**2 array([ -4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00]) np.set_printoptions(suppress=True) x**2 - (x + eps)**2 array([-0., -0., 0., 0.]) A custom formatter can be used to display array elements as desired: np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)}) x = np.arange(3) x array([int: 0, int: -1, int: -2]) np.set_printoptions() # formatter gets reset x array([0, 1, 2]) To put back the default options, you can use: np.set_printoptions(edgeitems=3,infstr='inf', linewidth=75, nanstr='nan', precision=8, suppress=False, threshold=1000, formatter=None) set_string_function(f, repr=True) Set a Python function to be used when pretty printing arrays. Parameters ---------- f : function or None Function to be used to pretty print arrays. The function should expect a single array argument and return a string of the representation of the array. If None, the function is reset to the default NumPy function to print arrays. repr : bool, optional If True (default), the function for pretty printing (__repr__) is set, if False the function that returns the default string representation (__str__) is set. See Also -------- set_printoptions, get_printoptions Examples -------- def pprint(arr): return 'HA! - What are you going to do now?' ... np.set_string_function(pprint) a = np.arange(10) a HA! - What are you going to do now? print a [0 1 2 3 4 5 6 7 8 9] We can reset the function to the default: np.set_string_function(None) a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) repr affects either pretty printing or normal string representation. Note that __repr__ is still affected by setting __str__ because the width of each array element in the returned string becomes equal to the length of the result of __str__(). x = np.arange(4) np.set_string_function(lambda x:'random', repr=False) x.__str__() 'random' x.__repr__() 'array([ 0, 1, 2, 3])' setbufsize(size) Set the size of the buffer used in ufuncs. Parameters ---------- size : int Size of buffer. setdiff1d(ar1, ar2, assume_unique=False) Find the set difference of two arrays. Return the sorted, unique values in ar1 that are not in ar2. Parameters ---------- ar1 : array_like Input array. ar2 : array_like Input comparison array. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setdiff1d : ndarray Sorted 1D array of values in ar1 that are not in ar2. See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Examples -------- a = np.array([1, 2, 3, 2, 4, 1]) b = np.array([3, 4, 5, 6]) np.setdiff1d(a, b) array([1, 2]) seterr(all=None, divide=None, over=None, under=None, invalid=None) Set how floating-point errors are handled. Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by these settings. Parameters ---------- all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional Set treatment for all types of floating-point errors at once: - ignore: Take no action when the exception occurs. - warn: Print a RuntimeWarning (via the Python warnings module). - raise: Raise a FloatingPointError. - call: Call a function specified using the seterrcall function. - print: Print a warning directly to stdout. - log: Record error in a Log object specified by seterrcall. The default is not to change the current behavior. divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional Treatment for division by zero. over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional Treatment for floating-point overflow. under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional Treatment for floating-point underflow. invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional Treatment for invalid floating-point operation. Returns ------- old_settings : dict Dictionary containing the old settings. See also -------- seterrcall : Set a callback function for the 'call' mode. geterr, geterrcall, errstate Notes ----- The floating-point exceptions are defined in the IEEE 754 standard : - Division by zero: infinite result obtained from finite numbers. - Overflow: result too large to be expressed. - Underflow: result so close to zero that some precision was lost. - Invalid operation: result is not an expressible number, typically indicates that a NaN was produced. ..  http://en.wikipedia.org/wiki/IEEE_754 Examples -------- old_settings = np.seterr(all='ignore') #seterr to known value np.seterr(over='raise') {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'} np.seterr(**old_settings) # reset to default {'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'} np.int16(32000) * np.int16(3) 30464 old_settings = np.seterr(all='warn', over='raise') np.int16(32000) * np.int16(3) Traceback (most recent call last): File "<stdin>", line 1, in <module> FloatingPointError: overflow encountered in short_scalars old_settings = np.seterr(all='print') np.geterr() {'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'} np.int16(32000) * np.int16(3) Warning: overflow encountered in short_scalars 30464 seterrcall(func) Set the floating-point error callback function or log object. There are two ways to capture floating-point error messages. The first is to set the error-handler to 'call', using seterr. Then, set the function to call using this function. The second is to set the error-handler to 'log', using seterr. Floating-point errors then trigger a call to the 'write' method of the provided object. Parameters ---------- func : callable f(err, flag) or object with write method Function to call upon floating-point errors ('call'-mode) or object whose 'write' method is used to log such message ('log'-mode). The call function takes two arguments. The first is a string describing the type of error (such as "divide by zero", "overflow", "underflow", or "invalid value"), and the second is the status flag. The flag is a byte, whose four least-significant bits indicate the type of error, one of "divide", "over", "under", "invalid":: [0 0 0 0 divide over under invalid] In other words, flags = divide + 2*over + 4*under + 8*invalid. If an object is provided, its write method should take one argument, a string. Returns ------- h : callable, log instance or None The old error handler. See Also -------- seterr, geterr, geterrcall Examples -------- Callback upon error: def err_handler(type, flag): print "Floating point error (%s), with flag %s" % (type, flag) ... saved_handler = np.seterrcall(err_handler) save_err = np.seterr(all='call') np.array([1, 2, 3]) / 0.0 Floating point error (divide by zero), with flag 1 array([ Inf, Inf, Inf]) np.seterrcall(saved_handler) <function err_handler at 0x...> np.seterr(**save_err) {'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'} Log error message: class Log(object): def write(self, msg): print "LOG: %s" % msg ... log = Log() saved_handler = np.seterrcall(log) save_err = np.seterr(all='log') np.array([1, 2, 3]) / 0.0 LOG: Warning: divide by zero encountered in divide <BLANKLINE> array([ Inf, Inf, Inf]) np.seterrcall(saved_handler) <__main__.Log object at 0x...> np.seterr(**save_err) {'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'} seterrobj(...) seterrobj(errobj) Set the object that defines floating-point error handling. The error object contains all information that defines the error handling behavior in Numpy. seterrobj is used internally by the other functions that set error handling behavior (seterr, seterrcall). Parameters ---------- errobj : list The error object, a list containing three elements: [internal numpy buffer size, error mask, error callback function]. The error mask is a single integer that holds the treatment information on all four floating point errors. The information for each error type is contained in three bits of the integer. If we print it in base 8, we can see what treatment is set for "invalid", "under", "over", and "divide" (in that order). The printed string can be interpreted with * 0 : 'ignore' * 1 : 'warn' * 2 : 'raise' * 3 : 'call' * 4 : 'print' * 5 : 'log' See Also -------- geterrobj, seterr, geterr, seterrcall, geterrcall getbufsize, setbufsize Notes ----- For complete documentation of the types of floating-point exceptions and treatment options, see seterr. Examples -------- old_errobj = np.geterrobj() # first get the defaults old_errobj [10000, 0, None] def err_handler(type, flag): print "Floating point error (%s), with flag %s" % (type, flag) ... new_errobj = [20000, 12, err_handler] np.seterrobj(new_errobj) np.base_repr(12, 8) # int for divide=4 ('print') and over=1 ('warn') '14' np.geterr() {'over': 'warn', 'divide': 'print', 'invalid': 'ignore', 'under': 'ignore'} np.geterrcall() is err_handler True setxor1d(ar1, ar2, assume_unique=False) Find the set exclusive-or of two arrays. Return the sorted, unique values that are in only one (not both) of the input arrays. Parameters ---------- ar1, ar2 : array_like Input arrays. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. Returns ------- setxor1d : ndarray Sorted 1D array of unique values that are in only one of the input arrays. Examples -------- a = np.array([1, 2, 3, 2, 4]) b = np.array([2, 3, 5, 7, 5]) np.setxor1d(a,b) array([1, 4, 5, 7]) shape(a) Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- alen ndarray.shape : Equivalent array method. Examples -------- np.shape(np.eye(3)) (3, 3) np.shape([[1, 2]]) (1, 2) np.shape() (1,) np.shape(0) () a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) np.shape(a) (2,) a.shape (2,) show_config = show() sinc(x) Return the sinc function. The sinc function is :math:\sin(\pi x)/(\pi x). Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate sinc(x). Returns ------- out : ndarray sinc(x), which has the same shape as the input. Notes ----- sinc(0) is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- ..  Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html ..  Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- x = np.linspace(-4, 4, 41) np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> plt.xlabel("X") <matplotlib.text.Text object at 0x...> plt.show() It works in 2-D as well: x = np.linspace(-4, 4, 401) xx = np.outer(x, x) plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> size(a, axis=None) Return the number of elements along a given axis. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which the elements are counted. By default, give the total number of elements. Returns ------- element_count : int Number of elements along the specified axis. See Also -------- shape : dimensions of array ndarray.shape : dimensions of array ndarray.size : number of elements in array Examples -------- a = np.array([[1,2,3],[4,5,6]]) np.size(a) 6 np.size(a,1) 3 np.size(a,0) 2 sometrue(a, axis=None, out=None, keepdims=False) Check whether some values are true. Refer to any for full documentation. See Also -------- any : equivalent function sort(a, axis=-1, kind='quicksort', order=None) Return a sorted copy of an array. Parameters ---------- a : array_like Array to be sorted. axis : int or None, optional Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. Default is 'quicksort'. order : str or list of str, optional When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- sorted_array : ndarray Array of the same type and shape as a. See Also -------- ndarray.sort : Method to sort an array in-place. argsort : Indirect sort. lexsort : Indirect stable sort on multiple keys. searchsorted : Find elements in a sorted array. partition : Partial sort. Notes ----- The various sorting algorithms are characterized by their average speed, worst case performance, work space size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The three available algorithms have the following properties: =========== ======= ============= ============ ======= kind speed worst case work space stable =========== ======= ============= ============ ======= 'quicksort' 1 O(n^2) 0 no 'mergesort' 2 O(n*log(n)) ~n/2 yes 'heapsort' 3 O(n*log(n)) 0 no =========== ======= ============= ============ ======= All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Consequently, sorting along the last axis is faster and uses less space than sorting along any other axis. The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the order is determined by the real parts except when they are equal, in which case the order is determined by the imaginary parts. Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is: * Real: [R, nan] * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj] where R is a non-nan real value. Complex values with the same nan placements are sorted according to the non-nan part if it exists. Non-nan values are sorted as before. Examples -------- a = np.array([[1,4],[3,1]]) np.sort(a) # sort along the last axis array([[1, 4], [1, 3]]) np.sort(a, axis=None) # sort the flattened array array([1, 1, 3, 4]) np.sort(a, axis=0) # sort along the first axis array([[1, 1], [3, 4]]) Use the order keyword to specify a field to use when sorting a structured array: dtype = [('name', 'S10'), ('height', float), ('age', int)] values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38), ('Galahad', 1.7, 38)] a = np.array(values, dtype=dtype) # create a structured array np.sort(a, order='height') # doctest: +SKIP array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.8999999999999999, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) Sort by age, then height if ages are equal: np.sort(a, order=['age', 'height']) # doctest: +SKIP array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38), ('Arthur', 1.8, 41)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) sort_complex(a) Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) source(object, output=<open file '<stdout>', mode 'w'>) Print or write to a file the source code for a Numpy object. The source code is only returned for objects written in Python. Many functions and classes are defined in C and will therefore not return useful information. Parameters ---------- object : numpy object Input object. This can be any object (function, class, module, ...). output : file object, optional If output not supplied then source code is printed to screen (sys.stdout). File object must be created with either write 'w' or append 'a' modes. See Also -------- lookfor, info Examples -------- np.source(np.interp) #doctest: +SKIP In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py def interp(x, xp, fp, left=None, right=None): """.... (full docstring printed)""" if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) The source code is only returned for objects written in Python. np.source(np.array) #doctest: +SKIP Not available for this object. split(ary, indices_or_sections, axis=0) Split an array into multiple sub-arrays. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D array If indices_or_sections is an integer, N, the array will be divided into N equal arrays along axis. If such a split is not possible, an error is raised. If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis the array is split. For example, [2, 3] would, for axis=0, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along axis, an empty sub-array is returned correspondingly. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Raises ------ ValueError If indices_or_sections is given as an integer, but a split does not result in equal division. See Also -------- array_split : Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made. hsplit : Split array into multiple sub-arrays horizontally (column-wise). vsplit : Split array into multiple sub-arrays vertically (row wise). dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). concatenate : Join a sequence of arrays along an existing axis. stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third dimension). Examples -------- x = np.arange(9.0) np.split(x, 3) [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])] x = np.arange(8.0) np.split(x, [3, 5, 6, 10]) [array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5.]), array([ 6., 7.]), array([], dtype=float64)] squeeze(a, axis=None) Remove single-dimensional entries from the shape of an array. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0 Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised. Returns ------- squeezed : ndarray The input array, but with all or a subset of the dimensions of length 1 removed. This is always a itself or a view into a. Examples -------- x = np.array([[, , ]]) x.shape (1, 3, 1) np.squeeze(x).shape (3,) np.squeeze(x, axis=(2,)).shape (1, 3) stack(arrays, axis=0) Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension. .. versionadded:: 1.10.0 Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays. See Also -------- concatenate : Join a sequence of arrays along an existing axis. split : Split array into a list of multiple sub-arrays of equal size. Examples -------- arrays = [np.random.randn(3, 4) for _ in range(10)] np.stack(arrays, axis=0).shape (10, 3, 4) np.stack(arrays, axis=1).shape (3, 10, 4) np.stack(arrays, axis=2).shape (3, 4, 10) a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) np.stack((a, b)) array([[1, 2, 3], [2, 3, 4]]) np.stack((a, b), axis=-1) array([[1, 2], [2, 3], [3, 4]]) std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False) Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. .. versionadded: 1.7.0 If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- standard_deviation : ndarray, see dtype parameter above. If out is None, return a new array containing the standard deviation, otherwise return a reference to the output array. See Also -------- var, mean, nanmean, nanstd, nanvar numpy.doc.ufuncs : Section "Output arguments" Notes ----- The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std = sqrt(mean(abs(x - x.mean())**2)). The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate of the variance for normally distributed variables. The standard deviation computed in this function is the square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard deviation per se. Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real and nonnegative. For floating-point input, the *std* is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the dtype keyword can alleviate this issue. Examples -------- a = np.array([[1, 2], [3, 4]]) np.std(a) 1.1180339887498949 np.std(a, axis=0) array([ 1., 1.]) np.std(a, axis=1) array([ 0.5, 0.5]) In single precision, std() can be inaccurate: a = np.zeros((2, 512*512), dtype=np.float32) a[0, :] = 1.0 a[1, :] = 0.1 np.std(a) 0.45000005 Computing the standard deviation in float64 is more accurate: np.std(a, dtype=np.float64) 0.44999999925494177 sum(a, axis=None, dtype=None, out=None, keepdims=False) Sum of array elements over a given axis. Parameters ---------- a : array_like Elements to sum. axis : None or int or tuple of ints, optional Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.7.0 If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the default platform integer. In that case, the default platform integer is used instead. out : ndarray, optional Array into which the output is placed. By default, a new array is created. If out is given, it must be of the appropriate shape (the shape of a with axis removed, i.e., numpy.delete(a.shape, axis)). Its type is preserved. See doc.ufuncs (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr. Returns ------- sum_along_axis : ndarray An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out is returned. See Also -------- ndarray.sum : Equivalent method. cumsum : Cumulative sum of array elements. trapz : Integration of array values using the composite trapezoidal rule. mean, average Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. The sum of an empty array is the neutral element 0: np.sum([]) 0.0 Examples -------- np.sum([0.5, 1.5]) 2.0 np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 1 np.sum([[0, 1], [0, 5]]) 6 np.sum([[0, 1], [0, 5]], axis=0) array([0, 6]) np.sum([[0, 1], [0, 5]], axis=1) array([1, 5]) If the accumulator is too small, overflow occurs: np.ones(128, dtype=np.int8).sum(dtype=np.int8) -128 swapaxes(a, axis1, axis2) Interchange two axes of an array. Parameters ---------- a : array_like Input array. axis1 : int First axis. axis2 : int Second axis. Returns ------- a_swapped : ndarray For Numpy >= 1.10, if a is an ndarray, then a view of a is returned; otherwise a new array is created. For earlier Numpy versions a view of a is returned only if the order of the axes is changed, otherwise the input array is returned. Examples -------- x = np.array([[1,2,3]]) np.swapaxes(x,0,1) array([, , ]) x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) x array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) np.swapaxes(x,0,2) array([[[0, 4], [2, 6]], [[1, 5], [3, 7]]]) take(a, indices, axis=None, out=None, mode='raise') Take elements from an array along an axis. This function does the same thing as "fancy" indexing (indexing arrays using arrays); however, it can be easier to use if you need elements along a given axis. Parameters ---------- a : array_like The source array. indices : array_like The indices of the values to extract. .. versionadded:: 1.8.0 Also allow scalars for indices. axis : int, optional The axis over which to select values. By default, the flattened input array is used. out : ndarray, optional If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Returns ------- subarray : ndarray The returned array has the same type as a. See Also -------- compress : Take elements using a boolean mask ndarray.take : equivalent method Examples -------- a = [4, 3, 5, 7, 6, 8] indices = [0, 1, 4] np.take(a, indices) array([4, 3, 6]) In this example if a is an ndarray, "fancy" indexing can be used. a = np.array(a) a[indices] array([4, 3, 6]) If indices is not one dimensional, the output also has these dimensions. np.take(a, [[0, 1], [2, 3]]) array([[4, 3], [5, 7]]) tensordot(a, b, axes=2) Compute tensor dot product along specified axes for arrays >= 1-D. Given two tensors (arrays of dimension greater than or equal to one), a and b, and an array_like object containing two array_like objects, (a_axes, b_axes), sum the products of a's and b's elements (components) over the axes specified by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of a and the first N dimensions of b are summed over. Parameters ---------- a, b : array_like, len(shape) >= 1 Tensors to "dot". axes : int or (2,) array_like * integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The sizes of the corresponding axes must match. * (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to b. Both elements array_like must be of the same length. See Also -------- dot, einsum Notes ----- Three common use cases are: axes = 0 : tensor producta\otimes b$axes = 1 : tensor dot product$a\cdot b$axes = 2 : (default) tensor double contraction$a:b\$

When axes is integer_like, the sequence for evaluation will be: first
the -Nth axis in a and 0th axis in b, and the -1th axis in a and
Nth axis in b last.

When there is more than one axis to sum over - and they are not the last
(first) axes of a (b) - the argument axes should consist of
two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.

Examples
--------

a = np.arange(60.).reshape(3,4,5)
b = np.arange(24.).reshape(4,3,2)
c = np.tensordot(a,b, axes=([1,0],[0,1]))
c.shape
(5, 2)
c
array([[ 4400.,  4730.],
[ 4532.,  4874.],
[ 4664.,  5018.],
[ 4796.,  5162.],
[ 4928.,  5306.]])
# A slower but equivalent way of computing the same...
d = np.zeros((5,2))
for i in range(5):
for j in range(2):
for k in range(3):
for n in range(4):
d[i,j] += a[k,n,i] * b[n,k,j]
c == d
array([[ True,  True],
[ True,  True],
[ True,  True],
[ True,  True],
[ True,  True]], dtype=bool)

a = np.array(range(1, 9))
a.shape = (2, 2, 2)
A = np.array(('a', 'b', 'c', 'd'), dtype=object)
A.shape = (2, 2)
a; A
array([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
array([[a, b],
[c, d]], dtype=object)

np.tensordot(a, A) # third argument default is 2 for double-contraction
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)

np.tensordot(a, A, 1)
array([[[acc, bdd],
[aaacccc, bbbdddd]],
[[aaaaacccccc, bbbbbdddddd],
[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)

np.tensordot(a, A, 0) # tensor product (result too long to incl.)
array([[[[[a, b],
[c, d]],
...

np.tensordot(a, A, (0, 1))
array([[[abbbbb, cddddd],
[aabbbbbb, ccdddddd]],
[[aaabbbbbbb, cccddddddd],
[aaaabbbbbbbb, ccccdddddddd]]], dtype=object)

np.tensordot(a, A, (2, 1))
array([[[abb, cdd],
[aaabbbb, cccdddd]],
[[aaaaabbbbbb, cccccdddddd],
[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)

np.tensordot(a, A, ((0, 1), (0, 1)))
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)

np.tensordot(a, A, ((2, 1), (1, 0)))
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

tile(A, reps)
Construct an array by repeating A the number of times given by reps.

If reps has length d, the result will have dimension of
max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote A to d-dimensions manually before calling this
function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1's to it.
Thus for an A of shape (2, 3, 4, 5), a reps of (2, 2) is treated as
(1, 1, 2, 2).

Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of A along each axis.

Returns
-------
c : ndarray
The tiled output array.

--------
repeat : Repeat elements of an array.

Examples
--------
a = np.array([0, 1, 2])
np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])

b = np.array([[1, 2], [3, 4]])
np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])

trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset
is returned, i.e., the sum of elements a[i,i+offset] for all i.

If a has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-D sub-arrays whose traces are returned.
The shape of the resulting array is the same as that of a with axis1
and axis2 removed.

Parameters
----------
a : array_like
Input array, from which the diagonals are taken.
offset : int, optional
Offset of the diagonal from the main diagonal. Can be both positive
and negative. Defaults to 0.
axis1, axis2 : int, optional
Axes to be used as the first and second axis of the 2-D sub-arrays
from which the diagonals should be taken. Defaults are the first two
axes of a.
dtype : dtype, optional
Determines the data-type of the returned array and of the accumulator
where the elements are summed. If dtype has the value None and a is
of integer type of precision less than the default integer
precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.
out : ndarray, optional
Array into which the output is placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
-------
sum_along_diagonals : ndarray
If a is 2-D, the sum along the diagonal is returned.  If a has
larger dimensions, then an array of sums along diagonals is returned.

--------
diag, diagonal, diagflat

Examples
--------
np.trace(np.eye(3))
3.0
a = np.arange(8).reshape((2,2,2))
np.trace(a)
array([6, 8])

a = np.arange(24).reshape((2,2,2,3))
np.trace(a).shape
(2, 3)

transpose(a, axes=None)
Permute the dimensions of an array.

Parameters
----------
a : array_like
Input array.
axes : list of ints, optional
By default, reverse the dimensions, otherwise permute the axes
according to the values given.

Returns
-------
p : ndarray
a with its axes permuted.  A view is returned whenever
possible.

--------
rollaxis
argsort

Notes
-----
Use transpose(a, argsort(axes)) to invert the transposition of tensors
when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples
--------
x = np.arange(4).reshape((2,2))
x
array([[0, 1],
[2, 3]])

np.transpose(x)
array([[0, 2],
[1, 3]])

x = np.ones((1, 2, 3))
np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.

Integrate y (x) along given axis.

Parameters
----------
y : array_like
Input array to integrate.
x : array_like, optional
If x is None, then spacing between all y elements is dx.
dx : scalar, optional
If x is None, spacing given by dx is assumed. Default is 1.
axis : int, optional
Specify the axis.

Returns
-------
trapz : float
Definite integral as approximated by trapezoidal rule.

--------
sum, cumsum

Notes
-----
Image _ illustrates trapezoidal rule -- y-axis locations of points
will be taken from y array, by default x-axis distances between
points will be 1.0, alternatively they can be provided with x array
or with dx scalar.  Return value will be equal to combined area under
the red lines.

References
----------

..  Illustration image:
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

Examples
--------
np.trapz([1,2,3])
4.0
np.trapz([1,2,3], x=[4,6,8])
8.0
np.trapz([1,2,3], dx=2)
8.0
a = np.arange(6).reshape(2, 3)
a
array([[0, 1, 2],
[3, 4, 5]])
np.trapz(a, axis=0)
array([ 1.5,  2.5,  3.5])
np.trapz(a, axis=1)
array([ 2.,  8.])

tri(N, M=None, k=0, dtype=<type 'float'>)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters
----------
N : int
Number of rows in the array.
M : int, optional
Number of columns in the array.
By default, M is taken equal to N.
k : int, optional
The sub-diagonal at and below which the array is filled.
k = 0 is the main diagonal, while k < 0 is below it,
and k > 0 is above.  The default is 0.
dtype : dtype, optional
Data type of the returned array.  The default is float.

Returns
-------
tri : ndarray of shape (N, M)
Array with its lower triangle filled with ones and zero elsewhere;
in other words T[i,j] == 1 for i <= j + k, 0 otherwise.

Examples
--------
np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

np.tri(3, 5, -1)
array([[ 0.,  0.,  0.,  0.,  0.],
[ 1.,  0.,  0.,  0.,  0.],
[ 1.,  1.,  0.,  0.,  0.]])

tril(m, k=0)
Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.

Parameters
----------
m : array_like, shape (M, N)
Input array.
k : int, optional
Diagonal above which to zero elements.  k = 0 (the default) is the
main diagonal, k < 0 is below it and k > 0 is above.

Returns
-------
tril : ndarray, shape (M, N)
Lower triangle of m, of same shape and data-type as m.

--------
triu : same thing, only for the upper triangle

Examples
--------
np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0,  0,  0],
[ 4,  0,  0],
[ 7,  8,  0],
[10, 11, 12]])

tril_indices(n, k=0, m=None)
Return the indices for the lower-triangle of an (n, m) array.

Parameters
----------
n : int
The row dimension of the arrays for which the returned
indices will be valid.
k : int, optional
Diagonal offset (see tril for details).
m : int, optional

The column dimension of the arrays for which the returned
arrays will be valid.
By default m is taken equal to n.

Returns
-------
inds : tuple of arrays
The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array.

--------
triu_indices : similar function, for upper-triangular.
tril, triu

Notes
-----

Examples
--------
Compute two different sets of indices to access 4x4 arrays, one for the
lower triangular part starting at the main diagonal, and one starting two
diagonals further right:

il1 = np.tril_indices(4)
il2 = np.tril_indices(4, 2)

Here is how they can be used with a sample array:

a = np.arange(16).reshape(4, 4)
a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

a[il1]
array([ 0,  4,  5,  8,  9, 10, 12, 13, 14, 15])

And for assigning values:

a[il1] = -1
a
array([[-1,  1,  2,  3],
[-1, -1,  6,  7],
[-1, -1, -1, 11],
[-1, -1, -1, -1]])

These cover almost the whole array (two diagonals right of the main one):

a[il2] = -10
a
array([[-10, -10, -10,   3],
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])

tril_indices_from(arr, k=0)
Return the indices for the lower-triangle of arr.

See tril_indices for full details.

Parameters
----------
arr : array_like
The indices will be valid for square arrays whose dimensions are
the same as arr.
k : int, optional
Diagonal offset (see tril for details).

--------
tril_indices, tril

Notes
-----

trim_zeros(filt, trim='fb')
Trim the leading and/or trailing zeros from a 1-D array or sequence.

Parameters
----------
filt : 1-D array or sequence
Input array.
trim : str, optional
A string with 'f' representing trim from front and 'b' to trim from
back. Default is 'fb', trim zeros from both front and back of the
array.

Returns
-------
trimmed : 1-D array or sequence
The result of trimming the input. The input data type is preserved.

Examples
--------
a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])

np.trim_zeros(a, 'b')
array([0, 0, 0, 1, 2, 3, 0, 2, 1])

The input data type is preserved, list/tuple in means list/tuple out.

np.trim_zeros([0, 1, 2, 0])
[1, 2]

triu(m, k=0)
Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal
zeroed.

Please refer to the documentation for tril for further details.

--------
tril : lower triangle of an array

Examples
--------
np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1,  2,  3],
[ 4,  5,  6],
[ 0,  8,  9],
[ 0,  0, 12]])

triu_indices(n, k=0, m=None)
Return the indices for the upper-triangle of an (n, m) array.

Parameters
----------
n : int
The size of the arrays for which the returned indices will
be valid.
k : int, optional
Diagonal offset (see triu for details).
m : int, optional

The column dimension of the arrays for which the returned
arrays will be valid.
By default m is taken equal to n.

Returns
-------
inds : tuple, shape(2) of ndarrays, shape(n)
The indices for the triangle. The returned tuple contains two arrays,
each with the indices along one dimension of the array.  Can be used
to slice a ndarray of shape(n, n).

--------
tril_indices : similar function, for lower-triangular.
triu, tril

Notes
-----

Examples
--------
Compute two different sets of indices to access 4x4 arrays, one for the
upper triangular part starting at the main diagonal, and one starting two
diagonals further right:

iu1 = np.triu_indices(4)
iu2 = np.triu_indices(4, 2)

Here is how they can be used with a sample array:

a = np.arange(16).reshape(4, 4)
a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

a[iu1]
array([ 0,  1,  2,  3,  5,  6,  7, 10, 11, 15])

And for assigning values:

a[iu1] = -1
a
array([[-1, -1, -1, -1],
[ 4, -1, -1, -1],
[ 8,  9, -1, -1],
[12, 13, 14, -1]])

These cover only a small part of the whole array (two diagonals right
of the main one):

a[iu2] = -10
a
array([[ -1,  -1, -10, -10],
[  4,  -1,  -1, -10],
[  8,   9,  -1,  -1],
[ 12,  13,  14,  -1]])

triu_indices_from(arr, k=0)
Return the indices for the upper-triangle of arr.

See triu_indices for full details.

Parameters
----------
arr : ndarray, shape(N, N)
The indices will be valid for square arrays.
k : int, optional
Diagonal offset (see triu for details).

Returns
-------
triu_indices_from : tuple, shape(2) of ndarray, shape(N)
Indices for the upper-triangle of arr.

--------
triu_indices, triu

Notes
-----

typename(char)
Return a description for the given data type code.

Parameters
----------
char : str
Data type code.

Returns
-------
out : str
Description of the input data type code.

--------
dtype, typecodes

Examples
--------
typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
for typechar in typechars:
print typechar, ' : ', np.typename(typechar)
...
S1  :  character
?  :  bool
B  :  unsigned char
D  :  complex double precision
G  :  complex long double precision
F  :  complex single precision
I  :  unsigned integer
H  :  unsigned short
L  :  unsigned long integer
O  :  object
Q  :  unsigned long long integer
S  :  string
U  :  unicode
V  :  void
b  :  signed char
d  :  double precision
g  :  long precision
f  :  single precision
i  :  integer
h  :  short
l  :  long integer
q  :  long long integer

union1d(ar1, ar2)
Find the union of two arrays.

Return the unique, sorted array of values that are in either of the two
input arrays.

Parameters
----------
ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.

Returns
-------
union1d : ndarray
Unique, sorted union of the input arrays.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1,  0,  1,  2])

To find the union of more than two arrays, use functools.reduce:

from functools import reduce
reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])

unique(ar, return_index=False, return_inverse=False, return_counts=False)
Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, the indices of the unique array that
reconstruct the input array, and the number of times each unique value
comes up in the input array.

Parameters
----------
ar : array_like
Input array. This will be flattened if it is not already 1-D.
return_index : bool, optional
If True, also return the indices of ar that result in the unique
array.
return_inverse : bool, optional
If True, also return the indices of the unique array that can be used
to reconstruct ar.
return_counts : bool, optional
If True, also return the number of times each unique value comes up
in ar.

Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the first occurrences of the unique values in the
(flattened) original array. Only provided if return_index is True.
unique_inverse : ndarray, optional
The indices to reconstruct the (flattened) original array from the
unique array. Only provided if return_inverse is True.
unique_counts : ndarray, optional
The number of times each of the unique values comes up in the
original array. Only provided if return_counts is True.

--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.

Examples
--------
np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
a = np.array([[1, 1], [2, 3]])
np.unique(a)
array([1, 2, 3])

Return the indices of the original array that give the unique values:

a = np.array(['a', 'b', 'b', 'c', 'a'])
u, indices = np.unique(a, return_index=True)
u
array(['a', 'b', 'c'],
dtype='|S1')
indices
array([0, 1, 3])
a[indices]
array(['a', 'b', 'c'],
dtype='|S1')

Reconstruct the input array from the unique values:

a = np.array([1, 2, 6, 4, 2, 3, 2])
u, indices = np.unique(a, return_inverse=True)
u
array([1, 2, 3, 4, 6])
indices
array([0, 1, 4, 3, 1, 2, 1])
u[indices]
array([1, 2, 6, 4, 2, 3, 2])

unpackbits(...)
unpackbits(myarray, axis=None)

Unpacks elements of a uint8 array into a binary-valued output array.

Each element of myarray represents a bit-field that should be unpacked
into a binary-valued output array. The shape of the output array is either
1-D (if axis is None) or the same shape as the input array with unpacking
done along the axis specified.

Parameters
----------
myarray : ndarray, uint8 type
Input array.
axis : int, optional
Unpacks along this axis.

Returns
-------
unpacked : ndarray, uint8 type
The elements are binary-valued (0 or 1).

--------
packbits : Packs the elements of a binary-valued array into bits in a uint8
array.

Examples
--------
a = np.array([, , ], dtype=np.uint8)
a
array([[ 2],
[ 7],
], dtype=uint8)
b = np.unpackbits(a, axis=1)
b
array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)

unravel_index(...)
unravel_index(indices, dims, order='C')

Converts a flat index or array of flat indices into a tuple
of coordinate arrays.

Parameters
----------
indices : array_like
An integer array whose elements are indices into the flattened
version of an array of dimensions dims. Before version 1.6.0,
this function accepted just one index value.
dims : tuple of ints
The shape of the array to use for unraveling indices.
order : {'C', 'F'}, optional
Determines whether the indices should be viewed as indexing in
row-major (C-style) or column-major (Fortran-style) order.

Returns
-------
unraveled_coords : tuple of ndarray
Each array in the tuple has the same shape as the indices
array.

--------
ravel_multi_index

Examples
--------
np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

unwrap(p, discont=3.141592653589793, axis=-1)
Unwrap by changing deltas between values to 2*pi complement.

Unwrap radian phase p by changing absolute jumps greater than
discont to their 2*pi complement along the given axis.

Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is pi.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.

Returns
-------
out : ndarray
Output array.

--------

Notes
-----
If the discontinuity in p is smaller than pi, but larger than
discont, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.

Examples
--------
phase = np.linspace(0, np.pi, num=5)
phase[3:] += np.pi
phase
array([ 0.        ,  0.78539816,  1.57079633,  5.49778714,  6.28318531])
np.unwrap(phase)
array([ 0.        ,  0.78539816,  1.57079633, -0.78539816,  0.        ])

vander(x, N=None, increasing=False)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The
order of the powers is determined by the increasing boolean argument.
Specifically, when increasing is False, the i-th output column is
the input vector raised element-wise to the power of N - i - 1. Such
a matrix with a geometric progression in each row is named for Alexandre-
Theophile Vandermonde.

Parameters
----------
x : array_like
1-D input array.
N : int, optional
Number of columns in the output.  If N is not specified, a square
array is returned (N = len(x)).
increasing : bool, optional
Order of the powers of the columns.  If True, the powers increase
from left to right, if False (the default) they are reversed.

Returns
-------
out : ndarray
Vandermonde matrix.  If increasing is False, the first column is
x^(N-1), the second x^(N-2) and so forth. If increasing is
True, the columns are x^0, x^1, ..., x^(N-1).

--------
polynomial.polynomial.polyvander

Examples
--------
x = np.array([1, 2, 3, 5])
N = 3
np.vander(x, N)
array([[ 1,  1,  1],
[ 4,  2,  1],
[ 9,  3,  1],
[25,  5,  1]])

np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1,  1,  1],
[ 4,  2,  1],
[ 9,  3,  1],
[25,  5,  1]])

x = np.array([1, 2, 3, 5])
np.vander(x)
array([[  1,   1,   1,   1],
[  8,   4,   2,   1],
[ 27,   9,   3,   1],
[125,  25,   5,   1]])
np.vander(x, increasing=True)
array([[  1,   1,   1,   1],
[  1,   2,   4,   8],
[  1,   3,   9,  27],
[  1,   5,  25, 125]])

The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:

np.linalg.det(np.vander(x))
48.000000000000043
(5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution.  The variance is computed for the flattened array by
default, otherwise over the specified axis.

Parameters
----------
a : array_like
Array containing numbers whose variance is desired.  If a is not an
array, a conversion is attempted.
axis : None or int or tuple of ints, optional
Axis or axes along which the variance is computed.  The default is to
compute the variance of the flattened array.

If this is a tuple of ints, a variance is performed over multiple axes,
instead of a single axis or all the axes as before.
dtype : data-type, optional
Type to use in computing the variance.  For arrays of integer type
the default is float32; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternate output array in which to place the result.  It must have
the same shape as the expected output, but the type is cast if
necessary.
ddof : int, optional
"Delta Degrees of Freedom": the divisor used in the calculation is
N - ddof, where N represents the number of elements. By
default ddof is zero.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original arr.

Returns
-------
variance : ndarray, see dtype parameter above
If out=None, returns a new array containing the variance;
otherwise, a reference to the output array is returned.

--------
std , mean, nanmean, nanstd, nanvar
numpy.doc.ufuncs : Section "Output arguments"

Notes
-----
The variance is the average of the squared deviations from the mean,
i.e.,  var = mean(abs(x - x.mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x).
If, however, ddof is specified, the divisor N - ddof is used
instead.  In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of a hypothetical infinite population.
ddof=0 provides a maximum likelihood estimate of the variance for
normally distributed variables.

Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.

For floating-point input, the variance is computed using the same
precision the input has.  Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below).  Specifying a higher-accuracy accumulator using the dtype
keyword can alleviate this issue.

Examples
--------
a = np.array([[1, 2], [3, 4]])
np.var(a)
1.25
np.var(a, axis=0)
array([ 1.,  1.])
np.var(a, axis=1)
array([ 0.25,  0.25])

In single precision, var() can be inaccurate:

a = np.zeros((2, 512*512), dtype=np.float32)
a[0, :] = 1.0
a[1, :] = 0.1
np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

np.var(a, dtype=np.float64)
0.20249999932944759
((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

vdot(...)
vdot(a, b)

Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than
dot(a, b).  If the first argument is complex the complex conjugate
of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional arrays differently than dot:
it does *not* perform a matrix product, but flattens input arguments
to 1-D vectors first. Consequently, it should only be used for vectors.

Parameters
----------
a : array_like
If a is complex the complex conjugate is taken before calculation
of the dot product.
b : array_like
Second argument to the dot product.

Returns
-------
output : ndarray
Dot product of a and b.  Can be an int, float, or
complex depending on the types of a and b.

--------
dot : Return the dot product without using the complex conjugate of the
first argument.

Examples
--------
a = np.array([1+2j,3+4j])
b = np.array([5+6j,7+8j])
np.vdot(a, b)
(70-8j)
np.vdot(b, a)
(70+8j)

Note that higher-dimensional arrays are flattened!

a = np.array([[1, 4], [5, 6]])
b = np.array([[4, 1], [2, 2]])
np.vdot(a, b)
30
np.vdot(b, a)
30
1*4 + 4*1 + 5*2 + 6*2
30

vsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation.  vsplit is equivalent
to split with axis=0 (default), the array is always split along the
first axis regardless of the array dimension.

--------
split : Split an array into multiple sub-arrays of equal size.

Examples
--------
x = np.arange(16.0).reshape(4, 4)
x
array([[  0.,   1.,   2.,   3.],
[  4.,   5.,   6.,   7.],
[  8.,   9.,  10.,  11.],
[ 12.,  13.,  14.,  15.]])
np.vsplit(x, 2)
[array([[ 0.,  1.,  2.,  3.],
[ 4.,  5.,  6.,  7.]]),
array([[  8.,   9.,  10.,  11.],
[ 12.,  13.,  14.,  15.]])]
np.vsplit(x, np.array([3, 6]))
[array([[  0.,   1.,   2.,   3.],
[  4.,   5.,   6.,   7.],
[  8.,   9.,  10.,  11.]]),
array([[ 12.,  13.,  14.,  15.]]),
array([], dtype=float64)]

With a higher dimensional array the split is still along the first axis.

x = np.arange(8.0).reshape(2, 2, 2)
x
array([[[ 0.,  1.],
[ 2.,  3.]],
[[ 4.,  5.],
[ 6.,  7.]]])
np.vsplit(x, 2)
[array([[[ 0.,  1.],
[ 2.,  3.]]]),
array([[[ 4.,  5.],
[ 6.,  7.]]])]

vstack(tup)
Stack arrays in sequence vertically (row wise).

Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by vsplit.

Parameters
----------
tup : sequence of ndarrays
Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.

Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.

--------
stack : Join a sequence of arrays along a new axis.
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
concatenate : Join a sequence of arrays along an existing axis.
vsplit : Split array into a list of multiple sub-arrays vertically.

Notes
-----
Equivalent to np.concatenate(tup, axis=0) if tup contains arrays that
are at least 2-dimensional.

Examples
--------
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])

a = np.array([, , ])
b = np.array([, , ])
np.vstack((a,b))
array([,
,
,
,
,
])

where(...)
where(condition, [x, y])

Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters
----------
condition : array_like, bool
When True, yield x, otherwise yield y.
x, y : array_like, optional
Values from which to choose. x and y need to have the same
shape as condition.

Returns
-------
out : ndarray or tuple of ndarrays
If both x and y are specified, the output array contains
elements of x where condition is True, and elements from
y elsewhere.

If only condition is given, return the tuple
condition.nonzero(), the indices where condition is True.

--------
nonzero, choose

Notes
-----
If x and y are given and input arrays are 1-D, where is
equivalent to::

[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples
--------
np.where([[True, False], [True, True]],
[[1, 2], [3, 4]],
[[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])

np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

x = np.arange(9.).reshape(3, 3)
np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
x[np.where( x > 3.0 )]               # Note: result is 1D.
array([ 4.,  5.,  6.,  7.,  8.])
np.where(x < 5, x, -1)               # Note: broadcasting.
array([[ 0.,  1.,  2.],
[ 3.,  4., -1.],
[-1., -1., -1.]])

Find the indices of elements of x that are in goodvalues.

goodvalues = [3, 4, 7]
ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
ix
array([[False, False, False],
[ True,  True, False],
[False,  True, False]], dtype=bool)
np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))

who(vardict=None)
Print the Numpy arrays in the given dictionary.

If there is no dictionary passed in or vardict is None then returns
Numpy arrays in the globals() dictionary (all Numpy arrays in the
namespace).

Parameters
----------
vardict : dict, optional
A dictionary possibly containing ndarrays.  Default is globals().

Returns
-------
out : None
Returns 'None'.

Notes
-----
Prints out the name, shape, bytes and type of all of the ndarrays
present in vardict.

Examples
--------
a = np.arange(10)
b = np.ones(20)
np.who()
Name            Shape            Bytes            Type
===========================================================
a               10               40               int32
b               20               160              float64
Upper bound on total bytes  =       200

d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
'idx':5}
np.who(d)
Name            Shape            Bytes            Type
===========================================================
y               3                24               float64
x               2                16               float64
Upper bound on total bytes  =       40

zeros(...)
zeros(shape, dtype=float, order='C')

Return a new array of given shape and type, filled with zeros.

Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., (2, 3) or 2.
dtype : data-type, optional
The desired data-type for the array, e.g., numpy.int8.  Default is
numpy.float64.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

Returns
-------
out : ndarray
Array of zeros with the given shape, dtype, and order.

--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.

Examples
--------
np.zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])

np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])

np.zeros((2, 1))
array([[ 0.],
[ 0.]])

s = (2,2)
np.zeros(s)
array([[ 0.,  0.],
[ 0.,  0.]])

np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
dtype=[('x', '<i4'), ('y', '<i4')])

zeros_like(a, dtype=None, order='K', subok=True)
Return an array of zeros with the same shape and type as a given array.

Parameters
----------
a : array_like
The shape and data-type of a define these same attributes of
the returned array.
dtype : data-type, optional
Overrides the data type of the result.

order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if a is Fortran contiguous,
'C' otherwise. 'K' means match the layout of a as closely
as possible.

subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.

Returns
-------
out : ndarray
Array of zeros with the same shape and type as a.

--------
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.

Examples
--------
x = np.arange(6)
x = x.reshape((2, 3))
x
array([[0, 1, 2],
[3, 4, 5]])
np.zeros_like(x)
array([[0, 0, 0],
[0, 0, 0]])

y = np.arange(3, dtype=np.float)
y
array([ 0.,  1.,  2.])
np.zeros_like(y)
array([ 0.,  0.,  0.])

DATA
BUFSIZE = 8192
CLIP = 0
ERR_CALL = 3
ERR_DEFAULT = 521
ERR_IGNORE = 0
ERR_LOG = 5
ERR_PRINT = 4
ERR_RAISE = 2
ERR_WARN = 1
FLOATING_POINT_SUPPORT = 1
FPE_DIVIDEBYZERO = 1
FPE_INVALID = 8
FPE_OVERFLOW = 2
FPE_UNDERFLOW = 4
False_ = False
Inf = inf
Infinity = inf
MAXDIMS = 32
NAN = nan
NINF = -inf
NZERO = -0.0
NaN = nan
PINF = inf
PZERO = 0.0
RAISE = 2
SHIFT_DIVIDEBYZERO = 0
SHIFT_INVALID = 9
SHIFT_OVERFLOW = 3
SHIFT_UNDERFLOW = 6
ScalarType = (<type 'int'>, <type 'float'>, <type 'complex'>, <type 'l...
True_ = True
UFUNC_BUFSIZE_DEFAULT = 8192
UFUNC_PYVALS_NAME = 'UFUNC_PYVALS'
WRAP = 1
__NUMPY_SETUP__ = False
__git_revision__ = 'e46c2d78a27f25e66624a818276be57ef9458e60'
__mkl_version__ = '11.3.1'
__version__ = '1.10.4'
absolute = <ufunc 'absolute'>
arccos = <ufunc 'arccos'>
arccosh = <ufunc 'arccosh'>
arcsin = <ufunc 'arcsin'>
arcsinh = <ufunc 'arcsinh'>
arctan = <ufunc 'arctan'>
arctan2 = <ufunc 'arctan2'>
arctanh = <ufunc 'arctanh'>
bitwise_and = <ufunc 'bitwise_and'>
bitwise_not = <ufunc 'invert'>
bitwise_or = <ufunc 'bitwise_or'>
bitwise_xor = <ufunc 'bitwise_xor'>
c_ = <numpy.lib.index_tricks.CClass object>
cast = {<type 'numpy.unicode_'>: <function <lambda> at ...128'>: <func...
cbrt = <ufunc 'cbrt'>
ceil = <ufunc 'ceil'>
conj = <ufunc 'conjugate'>
conjugate = <ufunc 'conjugate'>
copysign = <ufunc 'copysign'>
cos = <ufunc 'cos'>
cosh = <ufunc 'cosh'>
degrees = <ufunc 'degrees'>
divide = <ufunc 'divide'>
e = 2.718281828459045
equal = <ufunc 'equal'>
euler_gamma = 0.5772156649015329
exp = <ufunc 'exp'>
exp2 = <ufunc 'exp2'>
expm1 = <ufunc 'expm1'>
fabs = <ufunc 'fabs'>
floor = <ufunc 'floor'>
floor_divide = <ufunc 'floor_divide'>
fmax = <ufunc 'fmax'>
fmin = <ufunc 'fmin'>
fmod = <ufunc 'fmod'>
frexp = <ufunc 'frexp'>
greater = <ufunc 'greater'>
greater_equal = <ufunc 'greater_equal'>
hypot = <ufunc 'hypot'>
index_exp = <numpy.lib.index_tricks.IndexExpression object>
inf = inf
infty = inf
invert = <ufunc 'invert'>
isfinite = <ufunc 'isfinite'>
isinf = <ufunc 'isinf'>
isnan = <ufunc 'isnan'>
ldexp = <ufunc 'ldexp'>
left_shift = <ufunc 'left_shift'>
less = <ufunc 'less'>
less_equal = <ufunc 'less_equal'>
little_endian = True
log = <ufunc 'log'>
log10 = <ufunc 'log10'>
log1p = <ufunc 'log1p'>
log2 = <ufunc 'log2'>
logical_and = <ufunc 'logical_and'>
logical_not = <ufunc 'logical_not'>
logical_or = <ufunc 'logical_or'>
logical_xor = <ufunc 'logical_xor'>
maximum = <ufunc 'maximum'>
mgrid = <numpy.lib.index_tricks.nd_grid object>
minimum = <ufunc 'minimum'>
mod = <ufunc 'remainder'>
modf = <ufunc 'modf'>
multiply = <ufunc 'multiply'>
nan = nan
nbytes = {<type 'numpy.unicode_'>: 0, <type 'numpy.int32'...umpy.float...
negative = <ufunc 'negative'>
newaxis = None
nextafter = <ufunc 'nextafter'>
not_equal = <ufunc 'not_equal'>
ogrid = <numpy.lib.index_tricks.nd_grid object>
pi = 3.141592653589793
power = <ufunc 'power'>
r_ = <numpy.lib.index_tricks.RClass object>
reciprocal = <ufunc 'reciprocal'>
remainder = <ufunc 'remainder'>
right_shift = <ufunc 'right_shift'>
rint = <ufunc 'rint'>
s_ = <numpy.lib.index_tricks.IndexExpression object>
sctypeDict = {0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>, 2: <typ...
sctypeNA = {'?': 'Bool', 'B': 'UInt8', 'Bool': <type 'numpy.bool_'>, '...
sctypes = {'complex': [<type 'numpy.complex64'>, <type 'numpy.complex1...
sign = <ufunc 'sign'>
signbit = <ufunc 'signbit'>
sin = <ufunc 'sin'>
sinh = <ufunc 'sinh'>
spacing = <ufunc 'spacing'>
sqrt = <ufunc 'sqrt'>
square = <ufunc 'square'>
subtract = <ufunc 'subtract'>
tan = <ufunc 'tan'>
tanh = <ufunc 'tanh'>
true_divide = <ufunc 'true_divide'>
trunc = <ufunc 'trunc'>
typeDict = {0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>, 2: <type ...
typeNA = {'?': 'Bool', 'B': 'UInt8', 'Bool': <type 'numpy.bool_'>, 'Co...
typecodes = {'All': '?bhilqpBHILQPefdgFDGSUVOMm', 'AllFloat': 'efdgFDG...

VERSION
1.10.4

03-07 1万+  05-11 596
07-23 2万+
12-29 8232
03-13 13万+
11-16 1万+
09-16 1106
11-13 203
03-18 2215
02-03 2189
08-17 4万+
01-20 95
02-07 44
03-02 4296
02-12 1万+
06-17 27万+
08-06 913
02-06 1141
01-17 1万+ 点击重新获取   扫码支付  余额充值