自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 资源 (3)
  • 收藏
  • 关注

原创 最小样本量计算公式

在这个公式中,n代表每组所需的样本量,对于A/B测试等至少包含两组的实验,总样本量将是2n。Δ为两组数值的差异,如点击率的提升幅度;最小样本量计算公式通常涉及多个参数,包括置信水平、总体比例的估计值、误差限以及总体规模等,这些参数共同决定了所需样本量的大小。综上所述,最小样本量计算公式是统计学中一个重要的工具,它能够帮助研究者确定进行实验或调查所需的最小样本量。此外,还有其他形式的样本量计算公式,如普通抽样调查、整群抽样调查、分层抽样调查和精确度抽样等,每种公式都有其特定的应用场景和参数设置。

2025-01-22 18:53:38 2188

原创 监督学习之一般最小二乘法

定义线性回归通过拟合一个系数为 W = (W1, W2, ...., Wn) 的线性模型,以最小化观测目标与预测目标之间的残差平方和。这种线性拟合方法叫做一般最小二乘法。在数学上,它可以解决以下形式的问题:实现线性回归将在该拟合方法中使用数组 X、y,并在其 coef_ 成员中存储线性模型的系数。from sklearn import linear_modelreg = linear_model.LinearRegression()reg.fit([[0, 0], [1, 1]

2024-12-18 17:52:27 230

转载 常见分类器优缺点对比

随机森林是一种基于决策树的集成分类器,它通过随机选择特征和样本来构建多个决策树,并将多个决策树的结果进行投票来确定最终的分类结果。总的来说,分类器在数据分析中有着广泛的应用,可以帮助我们处理各种类型的数据,并从中提取有用的信息。在实际应用中,需要根据数据集的特点和分类任务的要求选择合适的分类器,并进行参数调整和模型优化来提高分类性能。K近邻是一种基于距离度量的分类器,它通过计算新样本与训练集中每个样本的距离来确定最近的K个邻居,并根据邻居的类别进行分类。K近邻的分类结果取决于邻居的数量和距离度量方式。

2023-05-29 23:36:40 4612 1

原创 numpy学习之随机数生成(1)

如果传递了一个int或array_like[ints],那么它将被传递给SeedSequence,以获得初始BitGenerator状态。两者之间的主要区别是,Generator依靠一个额外的BitGenerator来管理状态并生成随机位,然后将其转化为有用分布的随机值。参数:size:返回维度。生成器: 将BitGenerator中的随机比特序列转化为指定区间内遵循特定概率分布(如均匀、正态或二项式)的数字序列的对象。概述:用默认的BitGenerator(PCG64)构造一个新的Generator。

2023-04-13 18:49:02 725 1

原创 MONGODB命令行执行服务开启/关闭脚本

#!/bin/sh# start mongodb serviceMONGO_HOME=/usr/local/mongodbMONGO_BIN=${MONGO_HOME}/binMONGO_LOG=/usr/local/var/log/mongodbMONGO_DB=/usr/local/var/mongodb#MONGO_CONF=/usr/local/etc/confMONGO_BIN_MONGOD=${MONGO_BIN}/mongod#MONGO_CONF_MONGOD=${MON

2021-03-23 16:54:26 289

原创 【python】学习笔记 - 字符串拼接的方法

# 字符串变量可以直接拼接str1 = "I am"str2 = " Ian"str3 = str1 + str2print(str3)# join方法拼接序列seq1 = ["hello","world"]str4 = " ".join(seq1)print(str4)# format 拼接 str.format(args,**kwargs)str5 = 'hello, world! {} {}'.format('111', '222')print(str5)...

2020-06-15 16:11:49 179

原创 求解释~~~

 class MyOutstream   {   public:   const MyOutstream& operator   {   printf("%d",value);   return *this;//注意这个返回……   }            const MyOutstream& MyOutstream::operator     {   printf("%s",str

2010-07-17 11:18:00 769

模式识别PCA NMF LDA GMM算法代码

matlab code for pattern recognition. 包含完整PCA NMF LDA GMM代码和使用说明

2014-05-02

bayes classifier

matlab code 里面包括贝叶斯classifier 和KNN 算法的代码 以及 readme使用说明

2014-05-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除