处理数据失衡问题

本文探讨了在预测任务中遇到严重数据失衡问题的影响,并介绍了如何使用SMOTE(Synthetic Minority Over-sampling Technique)算法进行数据重采样,以达到类别平衡。通过调整perc.over和perc.under参数,可以控制少数类和多数类样本的数量,从而改善模型的预测性能。最终,通过应用SMOTE,数据将转换为1:1的比例,提高模型泛化能力。
摘要由CSDN通过智能技术生成

首先看一组失衡数据:
在这里插入图片描述
这组数据01比率严重失调这会对我们以后的预测值大大减小所以我们需要对它进行处理
#进行失衡处理

perc.over=100:表示少类别样本数=151+151*100%=302

perc.under=200:表示多类样本数(新增少数样本数200%=151200%=302)

hyper_new <- SMOTE(target~.,hyper,perc.over = 100,
perc.under = 200)

利用SOMTE函数可以对我们的两组数据进行处理
最后会形成两组是1:1的情况
在这里插入图片描述
如果不想是1:1可以根据改变perc.over和perc.under的参数来处理二者分别代表网上调比例和往下调比例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值