2023.10.3学习
人工智能基础学习
无监督学习
机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的数据进行分类或分群。(寻找数据的共同点,结果没有对错之分)
优点:算法不受监督信息的约束;不需要标签数据,数据样本大。
主要应用:聚类分析、关联规则、维度缩减。
聚类分析
聚类分析又称群分析,根据对象某些属性的相似度,将其自动划分为不同的类别。
常用算法
(1)KMeans聚类(K均值聚类)
- 根据数据与中心点距离划分类别
- 基于类别数据更新中心点
- 重复过程直到收敛
特点:实现简单、收敛快;需要指定划分为几类
(2)Meanshift(均值漂移聚类)
- 在中心点一定区域检索数据点
- 更新中心
- 重复流程到中心点稳定
特点:自动发现类别数量(几类数据),不需要人工选择;需要指定区域半径
(3)DBSCAN算法(基于密度的空间聚类算法)
- 基于区域点密度筛选有效数据
- 基于有效数据向周边扩张,直到没有新点加入
特点:过滤噪音数据;不需要人为指定类别数量;数据密度不同的时候会影响结果。
K均值聚类
以空间中k个点为中心进行聚类,对最靠近他们的对象归类。
from sklearn.cluster import KMeans
- 数学公式:
数据点与各簇中心点的距离(ujt : t状态下第 j 区域中心):
d
i
s
t
(
x
i
,
u
j
t
)
dist(x_i,u_j^t)
dist(xi,ujt)
根据距离归类(该数据点属于离它最近的数据中心所在的区域):
x
i
∈
u
n
e
a
r
e
s
t
t
x_i \in u^t_{nearest}
xi∈unearestt
中心更新(Sj :t 时刻第 j 个区域簇;k:包含在Sj范围内点的个数):取区域中所有点的平均值作为新的中心点
u
j
t
+
1
=
1
k
∑
x
i
∈
S
j
(
x
i
)
u_j^{t+1} = \frac 1 k \sum\limits_{x_i \in S_j}(x_i)
ujt+1=k1xi∈Sj∑(xi)
- 算法流程:
(1)选择聚类的个数k
(2)确定聚类中心(随机选定)
(3)根据各点到聚类中心的距离确定各点所属类别(聚类)
(4)根据各个类别数据更新聚类中心
(5)重复步骤3-4,直到聚类中心收敛
- 特点
优点:原理简单,实现容易,收敛速度快;参数少,使用方便
缺点:必须设置簇(区域)的数量;随机选择初始聚类中心,结果可能缺乏一致性。
- 代码
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
data = pd.read_csv('data.csv')
print(data.head())
fig1 = plt.figure()
plt.scatter(data.loc[:, 'V1'], data.loc[:, 'V2'])
plt.title('un-labeled data')
plt.show()
# 赋值
X = data.drop('label', axis=1)
print(X.head())
y = data.loc[:, 'label']
# pd.value_counts(y) # 此方法将被废除,使用下一行代码的方法pd.Series.value_counts()以代替
print(pd.Series.value_counts(y)) # 显示y列有多少类别的数据
# 绘制实际的分类图
fig2 = plt.figure()
label0 = plt.scatter(data.loc[:, 'V1'][y == 0], data.loc[:, 'V2'][y == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y == 1], data.loc[:, 'V2'][y == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y == 2], data.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2),('label0', 'label1', 'label2'))
plt.show()
# 建立KMeans模型
KM = KMeans(n_clusters=3, random_state=0) # 创建实例。参数n_clusters为指定将数据归为几类;random_state=0确保每次训练效果保持一致
print(X.shape, y.shape) # 检查维度
KM.fit(X) # 模型训练
# 获得聚类的中心点并显示
centers = KM.cluster_centers_
fig3 = plt.figure()
plt.scatter(centers[:, 0], centers[:, 1])
label0 = plt.scatter(data.loc[:, 'V1'][y == 0], data.loc[:, 'V2'][y == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y == 1], data.loc[:, 'V2'][y == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y == 2], data.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
# 预测指定点(V1 = 80, V2 = 60)的数据类别
y_test_predict = KM.predict([[80, 60]])
print(y_test_predict)
# 验证准确率
y_predict = KM.predict(X)
print(pd.value_counts(y_predict), pd.value_counts(y)) # 打印y_predict和y的数据分布
accuracy = accuracy_score(y, y_predict)
print(accuracy)
# 可视化结果
fig4 = plt.subplot(122)
label0 = plt.scatter(data.loc[:, 'V1'][y_predict == 0], data.loc[:, 'V2'][y_predict == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y_predict == 1], data.loc[:, 'V2'][y_predict == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y_predict == 2], data.loc[:, 'V2'][y_predict == 2])
plt.scatter(centers[:, 0], centers[:, 1])
plt.title('predicted data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
fig5 = plt.subplot(121) # 原始数据
plt.scatter(centers[:, 0], centers[:, 1])
label0 = plt.scatter(data.loc[:, 'V1'][y == 0], data.loc[:, 'V2'][y == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y == 1], data.loc[:, 'V2'][y == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y == 2], data.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
# 数据校正
y_corrected = []
for i in y_predict:
if i == 0:
y_corrected.append(1)
elif i == 1:
y_corrected.append(2)
else:
y_corrected.append(0)
print(pd.value_counts(y_corrected), pd.value_counts(y))
print(accuracy_score(y, y_corrected))
# 再次可视化结果
y_corrected = np.array(y_corrected) # 转化为数组格式
fig6 = plt.subplot(122)
label0 = plt.scatter(data.loc[:, 'V1'][y_corrected == 0], data.loc[:, 'V2'][y_corrected == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y_corrected == 1], data.loc[:, 'V2'][y_corrected == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y_corrected == 2], data.loc[:, 'V2'][y_corrected == 2])
plt.scatter(centers[:, 0], centers[:, 1])
plt.title('corrected data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
fig7 = plt.subplot(121) # 原始数据
plt.scatter(centers[:, 0], centers[:, 1])
label0 = plt.scatter(data.loc[:, 'V1'][y == 0], data.loc[:, 'V2'][y == 0])
label1 = plt.scatter(data.loc[:, 'V1'][y == 1], data.loc[:, 'V2'][y == 1])
label2 = plt.scatter(data.loc[:, 'V1'][y == 2], data.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
对比:KNN算法(K近邻分类模型)(监督学习:已对已有数据分好类别)
给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分入某个类。
from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot as plt
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
data = pd.read_csv('data.csv')
print(data.head())
X = data.drop('label', axis=1)
y = data.loc[:, 'label']
fig1 = plt.figure()
label0 = plt.scatter(X.loc[:, 'V1'][y == 0], X.loc[:, 'V2'][y == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y == 1], X.loc[:, 'V2'][y == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y == 2], X.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
# 建立KNN模型
KNN = KNeighborsClassifier(n_neighbors=3) # 创建KNN实例,需要在参数n_neighbors中说明数据分为几类
KNN.fit(X, y)
# 预测数据V1 = 80, V2 = 60数据哪个类别
y_predict_knn_test = KNN.predict([[80, 60]])
print(y_predict_knn_test)
# 预测准确率
y_predict_knn = KNN.predict(X)
print('knn_accuracy: ', accuracy_score(y, y_predict_knn))
print(pd.value_counts(y_predict_knn), pd.value_counts(y))
# 结果可视化
fig2 = plt.subplot(121)
label0 = plt.scatter(X.loc[:, 'V1'][y == 0], X.loc[:, 'V2'][y == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y == 1], X.loc[:, 'V2'][y == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y == 2], X.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
fig3 = plt.subplot(122)
label0 = plt.scatter(X.loc[:, 'V1'][y_predict_knn == 0], X.loc[:, 'V2'][y_predict_knn == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y_predict_knn == 1], X.loc[:, 'V2'][y_predict_knn == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y_predict_knn == 2], X.loc[:, 'V2'][y_predict_knn == 2])
plt.title('predicted_knn data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
均值漂移聚类
一种基于密度梯度上升的聚类算法(沿着密度上升方向寻找聚类中心点)
from sklearn.cluster import MeanShift, estimate_bandwidth
- 数学公式:
均值漂移(取所有点到中心点的距离的均值 为漂移距离)(Sh:以 u 为中心点,半径为 h 的高维球区域;k:包含在Sh范围内点个数):
M
(
x
)
=
1
k
∑
x
i
∈
S
h
(
u
−
x
i
)
M(x) = \frac 1 k \sum_{x_i \in S_h}(u-x_i)
M(x)=k1xi∈Sh∑(u−xi)
中心更新(Mt:t状态下求得的偏移均值,ut:t状态下的区域中心):
u
t
+
1
=
M
t
+
u
t
u^{t+1}=M^t+u^t
ut+1=Mt+ut
- 算法流程:
(1)随机选择未被分类的点
(2)找出离中心点距离在带宽之内的点,记作集合S
(3)计算从中心点到集合S中每个元素的偏移向量M
(4)中心点以向量M移动
(5)重复步骤2-4,直到收敛
(6)重复步骤1-5,直到所有的点都被归类
(7)分类:根据每个类 对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。
- 代码
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cluster import MeanShift, estimate_bandwidth
data = pd.read_csv('data.csv')
print(data.head())
X = data.drop('label', axis=1)
y = data.loc[:, 'label']
fig1 = plt.figure()
label0 = plt.scatter(X.loc[:, 'V1'][y == 0], X.loc[:, 'V2'][y == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y == 1], X.loc[:, 'V2'][y == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y == 2], X.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
# 获取带宽
bw = estimate_bandwidth(X, n_samples=150) # X为样本,n_samples为样本数量估计值
print(bw)
# 建立模型
ms = MeanShift(bandwidth=bw)
ms.fit(X) # 训练数据
# 预测准确率
y_predict_ms = ms.predict(X)
print(pd.value_counts(y_predict_ms), pd.value_counts(y))
# 结果可视化
fig2 = plt.subplot(121)
label0 = plt.scatter(X.loc[:, 'V1'][y == 0], X.loc[:, 'V2'][y == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y == 1], X.loc[:, 'V2'][y == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y == 2], X.loc[:, 'V2'][y == 2])
plt.title('labeled data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
fig3 = plt.subplot(122)
label0 = plt.scatter(X.loc[:, 'V1'][y_predict_ms == 0], X.loc[:, 'V2'][y_predict_ms == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y_predict_ms == 1], X.loc[:, 'V2'][y_predict_ms == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y_predict_ms == 2], X.loc[:, 'V2'][y_predict_ms == 2])
plt.title('predicted_ms data')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.show()
控制方面,复习了超前校正、滞后校正、pid方面的知识