根据二叉树前序和中序求后序

该博客主要介绍了如何通过二叉树的前序遍历和中序遍历来唯一确定后序遍历。提供了一种递归算法实现,首先根据前序和中序遍历构建二叉树,然后进行后序遍历。代码示例展示了输入前序和中序遍历字符串,输出后序遍历的过程。
摘要由CSDN通过智能技术生成

题目描述
二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。
输入
两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C…最多26个结点。
输出
输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。
样例输入 Copy
ABC
CBA
ABCDEFG
DCBAEFG
样例输出 Copy
CBA
DCBGFEA

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
using namespace std;

typedef char TElemType;
//二叉树的二叉链表存储表示
typedef struct BiTNode {
   TElemType data;                      //结点数据域
   struct BiTNode *lchild, *rchild; //左右孩子指针
} BiTNode, *BiTree;

//根据先序序列pre[pre_low..pre_low+len-1]和中序序列in[in_low..in_low+len-1]建树t
void BuildTree(BiTree& t, char pre[], int pre_low, char in[], int in_low, int len)
{
    t = new BiTNode;
if (t)
{
if (len <= 0)
{
t = NULL;
return;
}
t->data = pre[pre_low];
int i = 0;
while (in[in_low + i] != t->data)
i++;
BuildTree(t->lchild, pre, pre_low + 1, in, in_low, i);
BuildTree(t->rchild, pre, pre_low + i + 1, in, in_low + i + 1, len - (i + 1));
}
return;
}
// 后序遍历的递归算法
void PostOrderTraverse(BiTree t)
{
   if (t) {
   		
        PostOrderTraverse(t->lchild);//遍历左孩子
        PostOrderTraverse(t->rchild);//遍历右孩子
        cout<<t->data ;
    }
}

void DestroyBitree(BiTree& t)
{
   if(t)
	{
		DestroyBitree(t->lchild);
		DestroyBitree(t->rchild);
		free(t);
	}
}

int main()
{
   char pre[30], in[30];
   BiTree t = NULL;
   while(cin >> pre) {
      cin >> in;
      BuildTree(t, pre, 0, in, 0, strlen(in));
      PostOrderTraverse(t);
      DestroyBitree(t);
      cout << endl;
   }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shuo..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值