#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
const int N = 1e5 + 10;
int h[N], ph[N], hp[N], Size;//①ph[]、hp[]相当于两个指针数组 ②ph[j]=k表示第j个储存进堆的数在堆中的下标为k,hp[k]=j表示在堆中下标为k的数是第j个进入堆的
void heap_swap(int a, int b){
swap(ph[hp[a]], ph[hp[b]]);//将指向下标的数组值交换
swap(hp[a], hp[b]);//将指向ph的数组值交换
swap(h[a], h[b]);//将a、b对应的堆节点的值交换
}
void down(int u){
int t = u;//标记u节点
if(u * 2 <= Size && h[u*2] < h[t]){//如果u节点的左儿子节点存在且左儿子节点值小于u节点的值
t = u * 2;//标记左儿子节点
}
if(u * 2 + 1 <= Size && h[u*2+1] < h[t]){//如果u节点的右儿子节点存在且右儿子节点的值小于u节点的值
t = u * 2 + 1;//标记右儿子的值
}
if(u != t){//如果标记节点变了,表明存在儿子节点的值小于u节点,交换两个节点
heap_swap(u, t);
down(t);//继续向下遍历
}
}
void up(int u){
while(u / 2 && h[u] < h[u/2]){//如果u节点的父节点的值大于u节点
heap_swap(u, u/2);//交换两个节点的值
u /= 2;//u节点的下标变为原先的父节点的下标,继续向上遍历
}
}
int main()
{
int n, m = 0;
scanf("%d", &n);
while(n -- ){
int x, k;
char op[10];
scanf("%s", op);
if(!strcmp(op, "I")){
scanf("%d", &x);
m ++ ;//输入元素的个数++
Size ++ ;//堆的节点数++
ph[m] = Size;//第m个输入的元素在堆中的下标为size,将这个关系储存到ph数组
hp[Size] = m;//在堆中下标为size的节点是第m个输入的元素,将这个关系储存进hp数组
h[Size] = x;//将末节点赋值为x
up(Size);//将新加入的堆末节点进行up操作,交换到合适的位置
}
else if(!strcmp(op,"PM")){
printf("%d\n", h[1]);//在堆中,根节点就是最小值,输出
}
//①删除堆中元素就是将堆末元素与堆首元素交换,②size--将1节点踢出 ③将交换后的根节点(原来的末节点)进行down操作,交换到合适的位置
else if(!strcmp(op, "DM")){
heap_swap(1, Size);//将堆末元素与堆首元素交换
Size -- ;//1将节点踢出
down(1);//将交换后的根节点(原来的末节点)进行down操作,交换到合适的位置
}
else if(!strcmp(op, "D")){
scanf("%d", &k);
k = ph[k];//将ph数组中储存的第k个输入的元素对应的堆中的下标赋值给k
heap_swap(k, Size);//将该节点与堆末节点交换
Size -- ;//将1节点踢出
up(k), down(k);//将交换后的节点进行up/down操作,交换到合适的位置
}
else if(!strcmp(op, "C")){
scanf("%d%d", &k, &x);
k = ph[k];//将ph数组里面储存的第k个输入的元素对应的堆中的下标赋值给k
h[k] = x;//更改下标为k(k的意义已改变)的值
up(k), down(k);//将k节点进行up/down操作,交换到合适的位置
}
}
return 0;
}
AcWing 模拟堆 题解 (数组模拟堆的基础操作)(最短路径 优化dijkstra算法 基础)(最短路径)
最新推荐文章于 2024-06-04 22:41:47 发布