AcWing 893 集合-Nim游戏 题解 (博弈论)

在这里插入图片描述

#include<iostream>
#include<cstring>
#include<algorithm>
#include<unordered_set>

using namespace std;

const int N = 110, M = 1e4 + 10;

int n, m;
int s[N], f[M];//s[]表示集合中的数,f[]表示一堆石子数量的sg值 

int sg(int x){//计算x的sg值,sg[x]表示一个集合中不存在的最小的自然数 
	if(f[x] != -1) return f[x];//如果这种情况已经被计算过,直接返回值
	
	unordered_set<int> S;//储存sg集合
	
	for(int i = 0; i < m ;i ++ ){
		int sum = s[i];//遍历所有能减小的石子数量
		if(x >= s[i]) S.insert(sg(x - sum));//如果当前石子堆的数量可以减去这么多石子,就减去,并将减去后的状态记录进S 
	} 
	
	for(int i = 0; i < n; i ++ ){
		if(!S.count(i)) return f[x] = i;//i从小开始便利,如果这个数没有在S中,表示它就是x的sg值 
	}
}

int main()
{
	cin>>m;
	for(int i = 0; i < m; i ++ ){
		cin>>s[i];
	}
	
	memset(f, -1, sizeof(f));//初始化f数组
	cin>>n;
	int res = 0;
	for(int i = 0; i < n; i ++ ){//遍历每堆石子的sg值,求他们的异或和 
		int x;
		cin>>x;
		res ^= sg(x);
	} 
	
	if(res) puts("Yes");
	else puts("No");
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值