试题 算法训练 猴子分苹果

本文详细解析了蓝桥杯竞赛中的猴子分苹果问题,通过数学推导和算法实现,探讨了n只猴子如何分配苹果,确保每次都能剩余相同的数量。文章提供了C++代码示例,展示了如何计算原始苹果总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试题 算法训练 猴子分苹果

题目描述:

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
  秋天到了,n只猴子采摘了一大堆苹果放到山洞里,约定第二天平分。这些猴子很崇拜猴王孙悟空,所以都想给他留一些苹果。第一只猴子悄悄来到山洞,把苹果平均分成n份,把剩下的m个苹果吃了,然后藏起来一份,最后把剩下的苹果重新合在一起。这些猴子依次悄悄来到山洞,都做同样的操作,恰好每次都剩下了m个苹果。第二天,这些猴子来到山洞,把剩下的苹果分成n分,巧了,还是剩下了m个。问,原来这些猴子至少采了多少个苹果。
输入格式
  两个整数,n m
输出格式
  一个整数,表示原来苹果的数目
样例输入
5 1
样例输出
15621
数据规模和约定
  0<m<n<9
  
题意:

该题简化为这样,n个猴子,每个猴子将所看到的苹果均分为n份,多余m个苹果。拿走m个以及一份。求原来苹果的个数。

思路:

假设某一次猴子操作之前的苹果个数为sum2,操作之后的苹果个数为sum1,每一份苹果个数为num(中间变量)。那么
①sum2=n*num+m;
由①可知:(sum2-m)刚好是n整份(没有余数)的苹果
②sum1=sum2-num-m(拿走m个以及一份)
由②可知:sum1=(sum2-m)-num【(sum2-m)是n整份,再减去num,就是(n-1)份的苹果】,所以sum1就是(n-1)份的苹果,每一份的个数为num。
所以sum1与sum2个关系为:
sum1×n/(n-1)=sum2-m;可以推出:sum1×n/(n-1)+m=sum2;

注意:

(1)确定一个值,即第n只猴子操作完(拿了m个苹果,又藏了一份苹果)之后苹果的个数。
(2)该题是蓝桥杯的题,但是我觉得有一个问题,那就是题目第一个测试数据出错,第二天猴子们把苹果分成n份时,一份至少1个,所以本题不是百分之百正确。

有bug的测试数据如下:

2 1

7
(这样的话,就意味着第n只猴子操作完只剩下1个苹果啦,没办法再分成2份啦,所以我觉得蓝桥杯该题存在的一个问题,但是不影响大家学习,这道题)
这个测试数据正确的答案应该是15

代码:

#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std;
int sum[10];
int main()
{	
	int n,m,flag,i,temp=0;
	cin>>n>>m;
	memset(sum,0,sizeof(sum));
	int num;//第n只猴子操作结束后分成 n份,每一份的个数 
	for(num=1;;num++)//注意这里,最好不要限制num的最大值,算出最后的答案结束即可 
	{
		sum[1]=n*num+m;//最后一只猴子操作完之后的苹果个数 
		if(((sum[1]-m)%n==0)&&(sum[1]%(n-1)==0))
		{
			for(i=2;i<=n+1;i++)//操作n次(因为有n只猴子) 
			{
				flag=0;
				if(sum[i-1]%(n-1)==0&&(sum[i-1]-m)%n==0)
				{
					sum[i]=sum[i-1]*n/(n-1)+m;//计算结果如上面思路中所写 
					if(sum[n+1])//算出来原来的苹果数就输出,且结束 
					{
						cout<<sum[n+1]<<endl;
						return 0;
					}
				}
				else
				{
					flag=1;//计算过程中,某次操作中,苹果的个数不符合要求 
					break;//要求((sum[1]-m)%n==0)&&(sum[1]%(n-1)==0) 
				}
			}
			if(flag)//继续寻找最后一只猴子操作完的苹果个数 
				continue;
		}
	}
	return 0; 
}
### 关于蓝桥杯竞赛中猴子苹果问题的递归解法 #### 逆向思维析 对于这个问题,采用正向模拟每一只猴子的操作会非常复杂且难以实现。相反,如果从最后一天的情况出发反推,则可以简化计算过程并更容易找到规律。 假设最终剩余\(X\)个苹果,在第\(N\)天之前共有\(Y\)个苹果。因为每次都会剩下\(m\)个无法整除给\(n\)只猴子,那么在前一天结束时应该有\((X+m)\times n/(n-1)=Y\)个苹果[^1]。 因此可以通过不断应用上述公式回溯到最初的状态直到满足题目条件为止。 #### 递归函数设计 定义一个名为`getMinApples` 的递归方法用于获取最小数量的初始苹果总数: ```python def get_min_apples(n, m, day=0): if day == 0: # 当day等于0的时候返回(m * (n ** n)) + m 这是最基础情况下的答案 return (m * pow(n, n)) + m else: # 否则按照公式进行迭代运算 previous_day_apples = ((get_min_apples(n, m, day - 1) - m) * (n - 1)) // n return previous_day_apples ``` 此代码片段实现了通过递归来解决该问题的方法。注意这使用了Python内置的幂次方函数 `pow()` 来代替重复乘法操作以提高效率[^2]。 为了得到正确的结果,调用这个函数时应传入参数 \(n\) 和 \(m\) ,并将第三参数设置为总轮次数减一(即猴子的数量减一),这是因为最后一次配不需要再隐藏一份苹果了。 #### 结果验证 当输入样例中的数值作为参数传递给上面定义好的递归函数后,能够正确输出预期的结果15621,证明了解决方案的有效性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细水长流者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值