题目描述
杭州人称那些傻乎乎粘嗒嗒的人为 62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有 4 或 62 的号码。例如:62315,73418,88914 都属于不吉利号码。但是,61152 虽然含有 6 和 2,但不是 连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照号区间 [n,m],推断出交管局今后又要实际上给多少辆新的士车上牌照了。
输入格式
输入包含多组测试数据,每组数据占一行。
每组数据包含一个整数对 n 和 m。
当输入一行为“0 0”时,表示输入结束。
输出格式
对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
数据范围
1 ≤ n ≤ m ≤ 1 0 9 1≤n≤m≤10^9 1≤n≤m≤109
输入样例
1 100
0 0
输出样例
80
算法思想——数位DP
根据题目描述求一个牌照号区间 [ n , m ] [n,m] [n,m]中、有多少个满足不含有 4 或 62 的号码。用数位DP的思想进行分析,例如求区间 [ n , m ] [n,m] [n,m]中符合条件的数的个数:
- 实现函数
dp(n)
求区间 [ 1 , n ] [1,n] [1,n]中符合条件的数的个数 dp(m) - dp(n - 1)
求区间 [ n , m ] [n,m] [n,m]中符合条件的数的个数
dp(n)
可以用分类谈论的方法进行计算。在不能超过n
的情况下,从最高位开始向下枚举数n
的每一位a[i]
,计算出区间
[
1
−
n
]
[1-n]
[1−n]所有符合条件的方案。
如果从集合划分的角度进行分析,可以将所有分类用一棵二叉树表示出来。如下图所示:
- 左侧分支表示所有符合条件的数中第
i
位小于a[i]
的情况,即 0 − a [ i ] − 1 0-a[i] - 1 0−a[i]−1。此时,剩余i
位的数字任意取都不会超过n
,因此这一类的方案可以通过预先处理出i
位数字且最高位不超过a[i] - 1
的方案数(不包含4和62),然后进行累加即可。 - 右侧分支表示所有符合条件的数中第
i
位等于a[i]
的情况,此时继续向下分类讨论即可。 - 最后一位
a[0]
单独处理,如果能走到最右侧结点a[0]
,说明数字n
也是满足条件,此时总方案数增加1
。
算法实现
- 预处理出
f[i][j]
,表示有i
位数字且最高位为j
的数字集合中,不包含数字4和62的方案数。状态计算: f [ i ] [ j ] = ∑ f [ i − 1 ] [ k ] f[i][j] = \sum{ f[i - 1][k] } f[i][j]=∑f[i−1][k],其中- j , k ≠ 4 j,k\ne4 j,k=4
- j k ≠ 62 jk\ne 62 jk=62
- 预处理出数字
n
的每一位a[i]
- 从高位到低位枚举,累加每一位上符合条件的方案数。
代码实现
#include <iostream>
#include <vector>
using namespace std;
const int N = 15;
//f[i][j]表示i位数字且最高为j的数字集合中,不包含4、62的方案个数
int f[N][10];
//预处理f[i][j]
void init()
{
//初始状态:一位数字的情况
for(int i = 0; i <= 9; i ++)
{
if(i != 4) f[1][i] = 1;
}
//状态计算
for(int i = 2; i < N; i ++)
for(int j = 0; j <= 9; j ++ )
{
if(j == 4) continue;
for(int k = 0; k <= 9; k ++)
{
if(k == 4 || j == 6 && k == 2) continue;
f[i][j] += f[i - 1][k];
}
}
}
int dp(int n)
{
//n为0时,也满足条件
if(!n) return 1;
//将n的每一位保存到a数组中
vector<int> a;
while(n) a.push_back(n % 10), n /= 10;
int res = 0, last = 0; //last记录上一位数字
for(int i = a.size() - 1; i >= 0; i --)
{
int x = a[i];
//累加左侧分支的方案,即所有小于a[i]的、满足条件的方案
for(int j = 0; j < x; j ++)
{
if(j == 4 || last == 6 && j == 2) continue;
res += f[i + 1][j];
}
//当没有右侧分支时
if(x == 4 || last == 6 && x == 2) break;
//记录当前位上的数
last = x;
//当走到最后一位数时,说明n本身也是满足条件的方案
if(!i) res ++;
}
return res;
}
int main()
{
init();
int n, m;
while(cin >> n >> m, n || m)
{
cout << dp(m) - dp(n - 1) << endl;
}
return 0;
}