Catalan数列: 满足条件的01序列

Catalan数 费马小定理 快速幂求逆元

题目描述

给定 n n n 0 0 0 n n n 1 1 1,它们将按照某种顺序排成长度为 2 n 2n 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 0 0 的个数都不少于 1 1 1 的个数的序列有多少个。答案对 1 0 9 + 7 10^9+7 109+7 取模。

算法思想

01 01 01 序列置于坐标系中,起点定于原点。若 0 0 0 表示向右走, 1 1 1 表示向上走,那么任何前缀中 0 0 0 的个数不少于 1 1 1 的个数就转化为,路径上的任意一点,横坐标大于等于纵坐标。题目所求即为这样的合法路径数量。

下图中,表示从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n , n ) (n,n) (n,n) 的路径,在绿线及以下表示合法,若触碰红线即不合法。

Catalan.png

在上图中,如果将黑色路径(不合法路径)第一次越过红线位置后面的部分,画一条关于红线轴对称的线,即灰色路径。由图可知,任何一条不合法的路径(如黑色路径),都对应一条从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n − 1 , n + 1 ) (n−1,n+1) (n1,n+1) 的一条路径(如灰色路径)。而任何一条 ( 0 , 0 ) (0,0) (0,0) 走到 ( n − 1 , n + 1 ) (n−1,n+1) (n1,n+1) 的路径,也对应了一条从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n , n ) (n,n) (n,n)不合法路径

所以最终答案 a n s = C 2 n n − C 2 n n − 1 = C 2 n n n + 1 ans=C_{2n}^{n}-C_{2n}^{n - 1}=\frac{C_{2n}^{n}}{n + 1} ans=C2nnC2nn1=n+1C2nn

费马小定理

如果p是一个质数,而整数 a a a不是 p p p的倍数,则有 a p − 1 ≡ 1 ( m o d p ) a^{p-1} ≡ 1 (mod p) ap11(modp)

本题给出的 p = 1 0 9 + 7 p = 10^9 + 7 p=109+7,为质数,适用费马小定理,即 b b b的乘法逆元为 b p − 2 b^{p - 2} bp2

快速幂

使用快速幂求乘法逆元。

最终代码

#include <iostream>

using namespace std;

typedef long long LL;

const int mod = 1e9 + 7;

int qmi(int a, int b, int p)
{
    int res = 1;
    while(b)
    {
        if(b & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        b >>= 1;
    }
    return res;
}

int main()
{
    int n;
    cin >> n;
    //求Catalan(n)
    int a = 2 * n, b = n;
    
    int res = 1;
    
    //计算: 2n * (2n - 1) * (2n - 2) * ... * (n + 1) 模mod的结果
    for(int i = a; i > a - b; i --)
        res = (LL)res * i % mod;
    
    //计算 res * n!的乘法逆元模mod的结果
    for(int i = 1; i <= b; i ++)
        res = (LL)res * qmi(i, mod - 2, mod) % mod;
        
    //计算 res * (n + 1)的乘法逆元模mod的结果
    res = (LL)res * qmi(n + 1, mod - 2, mod) % mod;
    
    cout << res << endl;
    
    return 0;
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值