每周一算法:最大连续子序列的和

题目链接

最大子段和

题目描述

给出一个长度为 n n n 的序列 a a a,选出其中连续且非空的一段使得这段和最大。

输入格式

第一行是一个整数,表示序列的长度 n n n

第二行有 n n n 个整数,第 i i i 个整数表示序列的第 i i i 个数字 a i a_i ai

输出格式

输出一行一个整数表示答案。

样例 #1

样例输入 #1

7
2 -4 3 -1 2 -4 3

样例输出 #1

4

提示

样例 1 解释

选取 [ 3 , 5 ] [3, 5] [3,5] 子段 { 3 , − 1 , 2 } \{3, -1, 2\} {3,1,2},其和为 4 4 4

数据规模与约定
  • 对于 40 % 40\% 40% 的数据,保证 n ≤ 2 × 1 0 3 n \leq 2 \times 10^3 n2×103
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 2 × 1 0 5 1 \leq n \leq 2 \times 10^5 1n2×105 − 1 0 4 ≤ a i ≤ 1 0 4 -10^4 \leq a_i \leq 10^4 104ai104

算法思想

求序列中连续且非空的一段,使得这段和最大,求和的最大值可以使用动态规划的思想来处理。

状态表示

f [ i ] f[i] f[i]表示所有以 i i i为右端点的连续子段和的最大值。

最终答案为所有 f [ i ] f[i] f[i]的最大值。

状态计算

从最后一步分析,按照连续子段的长度进行分类:

  • 子段长度为 1 1 1,即只包含 1 1 1个数,此时和为 a [ i ] a[i] a[i]
  • 子段长度为 2 2 2,包含 2 2 2个数,此时和为 a [ i − 1 ] + a [ i ] a[i-1]+a[i] a[i1]+a[i]
  • 子段长度为 3 3 3,包含 3 3 3个数,此时和为 a [ i − 2 ] + a [ i − 1 ] + a [ i ] a[i-2]+a[i-1]+a[i] a[i2]+a[i1]+a[i]
  • 子段长度为 i i i,包含 i i i个数,此时和为 a [ 1 ] + a [ 2 ] + . . . + a [ i − 1 ] + a [ i ] a[1]+a[2]+...+a[i-1]+a[i] a[1]+a[2]+...+a[i1]+a[i]

f [ i ] f[i] f[i]应取应取以上情况的最大值。

不难看出,从第 2 2 2项开始,每一项都加上了 a [ i ] a[i] a[i],把 a [ i ] a[i] a[i]提取出来,就变成求 { a [ i − 1 ] , a [ i − 2 ] + a [ i − 1 ] , . . . , a [ 1 ] + a [ 2 ] + . . . + a [ i − 1 ] } \{a[i-1], a[i-2]+a[i-1],...,a[1]+a[2]+...+a[i-1]\} {a[i1],a[i2]+a[i1],...,a[1]+a[2]+...+a[i1]}的最大值再加上 a [ i ] a[i] a[i],即 f [ i − 1 ] + a [ i ] f[i-1]+a[i] f[i1]+a[i]。因此 f [ i ] = m a x { a [ i ] , f [ i − 1 ] + a [ i ] } f[i]=max\{a[i],f[i-1]+a[i]\} f[i]=max{a[i],f[i1]+a[i]}

初始状态

f [ 0 ] f[0] f[0]表示前 0 0 0项和的最大值,应尽可能小,由于序列中每一项的范围是 − 1 0 4 ≤ a i ≤ 1 0 4 -10^4 \leq a_i \leq 10^4 104ai104,存在负数,因此可以让 f [ 0 ] = − 1 e 9 f[0]=-1e9 f[0]=1e9

时间复杂度

  • 状态数为 n n n
  • 状态计算的时间复杂度为 O ( 1 ) O(1) O(1),总的时间复杂度为 O ( n ) O(n) O(n)

代码实现

#include <iostream>
using namespace std;
const int N = 2e5 + 10;
int a[N], f[N];
int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    //初始状态
    f[0] = -1e9;
    int ans = -1e9;
    //状态计算
    for(int i = 1; i <= n; i ++)
    {
        f[i] = max(a[i], f[i - 1] + a[i]);
        ans = max(ans, f[i]);
    }
    cout << ans;
    return 0;
}

空间优化

根据状态转移方程, f [ i ] = m a x { a [ i ] , f [ i − 1 ] + a [ i ] } f[i]=max\{a[i],f[i-1]+a[i]\} f[i]=max{a[i],f[i1]+a[i]},可以发现 f [ i ] f[i] f[i]只与 f [ i − 1 ] f[i-1] f[i1]相关,因此不需要用数组存储所有状态,只用一个变量滚动存储即可。

#include <iostream>
using namespace std;
const int N = 2e5 + 10;
int a[N];
int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    //初始状态
    int f = -1e9, ans = -1e9;
    //状态计算
    for(int i = 1; i <= n; i ++)
    {
        f = max(a[i], f + a[i]);
        ans = max(ans, f);
    }
    cout << ans;
    return 0;
}
  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值