NOIP2014提高组D1T2:联合权值

介绍了一种算法来解决NOIP2014竞赛中的问题,涉及图的性质、权值计算和特定树结构下的联合权值求解
摘要由CSDN通过智能技术生成

题目链接

NOIP2014提高组D1T2:联合权值

题目描述

无向连通图 G G G n n n 个点, n − 1 n-1 n1 条边。点从 1 1 1 n n n 依次编号,编号为 i i i 的点的权值为 W i W_i Wi,每条边的长度均为 1 1 1。图上两点 ( u , v ) (u, v) (u,v) 的距离定义为 u u u 点到 v v v 点的最短距离。对于图 G G G 上的点对 ( u , v ) (u, v) (u,v),若它们的距离为 2 2 2,则它们之间会产生 W v × W u W_v \times W_u Wv×Wu 的联合权值。

请问图 G G G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入格式

第一行包含 1 1 1 个整数 n n n

接下来 n − 1 n-1 n1 行,每行包含 2 2 2 个用空格隔开的正整数 u , v u,v u,v,表示编号为 u u u 和编号为 v v v 的点之间有边相连。

最后 1 1 1 行,包含 n n n 个正整数,每两个正整数之间用一个空格隔开,其中第 i i i 个整数表示图 G G G 上编号为 i i i 的点的权值为 W i W_i Wi

输出格式

输出共 1 1 1 行,包含 2 2 2 个整数,之间用一个空格隔开,依次为图 G G G 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对 10007 10007 10007 取余。

样例 #1

样例输入 #1

5  
1 2  
2 3
3 4  
4 5  
1 5 2 3 10

样例输出 #1

20 74

提示

样例解释

在这里插入图片描述

本例输入的图如上所示,距离为 2 2 2 的有序点对有 ( 1 , 3 ) (1,3) (1,3) ( 2 , 4 ) (2,4) (2,4) ( 3 , 1 ) (3,1) (3,1) 、$(3,5) 、 、 (4,2)$ 、$(5,3) $。

其联合权值分别为 2 , 15 , 2 , 20 , 15 , 20 2,15,2,20,15,20 2,15,2,20,15,20。其中最大的是 20 20 20,总和为 74 74 74

数据说明

  • 对于 30 % 30\% 30% 的数据, 1 < n ≤ 100 1 < n \leq 100 1<n100
  • 对于 60 % 60\% 60% 的数据, 1 < n ≤ 2000 1 < n \leq 2000 1<n2000
  • 对于 100 % 100\% 100% 的数据, 1 < n ≤ 2 × 1 0 5 1 < n \leq 2\times 10^5 1<n2×105 0 < W i ≤ 10000 0 < W_i \leq 10000 0<Wi10000

保证一定存在可产生联合权值的有序点对。

算法思想

根据题目描述,无向连通图 G G G n n n 个点, n − 1 n-1 n1 条边,说明该图是一棵树。对于一棵树来说,距离为 2 2 2的点对有下面两种情况,姑且称为“一字形”和“八字形”:
在这里插入图片描述

对于一字形来说, f a fa fa v v v之间的联合权值为 W f a × W v W_{fa} \times W_v Wfa×Wv ,可以直接求其中的最大值和所有联合权值之和。
对于八字型来说,可以将当前节点 u u u的所有子节点 v 1 , v 2 . . . v_1,v_2... v1,v2...两两配对,求其中的最大值和所有联合权值之和。由于每个点的权值 W i > 0 W_i>0 Wi>0,因此可以维护一个前缀最大值pre_max和前缀和pre_sum。这样每一点线性扫描一遍即可,不需要 O ( n 2 ) O(n^2) O(n2) 枚举。

值得注意的是 ( u , v ) (u, v) (u,v) ( v , u ) (v, u) (v,u)是两个不同的点对,因此在计算最终联合权值之和时要乘 2 2 2

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 200005, mod = 10007;
int w[N], ans_max, ans_sum;
vector<int> g[N];
void dfs(int u, int fa)
{
    int pre_max = 0, pre_sum = 0; //前缀最大值,前缀和
    for(int v : g[u])
    {
        if(v == fa) continue;
        if(fa != -1) //一字型
        {
            ans_max = max(ans_max, w[v] * w[fa]);
            ans_sum = (ans_sum + w[v] * w[fa]) % mod;
        }
        //八字形
        ans_max = max(ans_max, w[v] * pre_max);
        ans_sum = (ans_sum + w[v] * pre_sum) % mod;
        //更新前缀最大值和前缀和
        pre_max = max(pre_max, w[v]);
        pre_sum = (pre_sum + w[v]) % mod;
        
        dfs(v, u);
    }
}
int main()
{
    int n;
    scanf("%d", &n);
    for(int i = 1; i < n; i ++) //n个点树有n-1条边
    {
        int u, v;
        scanf("%d%d", &u, &v);
        g[u].push_back(v), g[v].push_back(u); //无向图,双向建边
    }
    for(int i = 1; i <= n; i ++) scanf("%d", &w[i]);
    dfs(1, -1);
    printf("%d %d", ans_max, ans_sum * 2 % mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值