题目链接
题目描述
C C C 国有 n n n 个大城市和 m m m 条道路,每条道路连接这 n n n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m m m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 1 1 条。
C C C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C C C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C C C 国 n n n 个城市的标号从 1 ∼ n 1\sim n 1∼n,阿龙决定从 1 1 1 号城市出发,并最终在 n n n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n n n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C C C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C C C 国有 5 5 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。
假设 1 ∼ n 1\sim n 1∼n 号城市的水晶球价格分别为 4 , 3 , 5 , 6 , 1 4,3,5,6,1 4,3,5,6,1。
阿龙可以选择如下一条线路: 1 → 2 → 3 → 5 1\to2\to3\to5 1→2→3→5,并在 2 2 2 号城市以 3 3 3 的价格买入水晶球,在 3 3 3 号城市以 5 5 5 的价格卖出水晶球,赚取的旅费数为 2 2 2。
阿龙也可以选择如下一条线路: 1 → 4 → 5 → 4 → 5 1\to4\to5\to4\to5 1→4→5→4→5,并在第 1 1 1 次到达 5 5 5 号城市时以 1 1 1 的价格买入水晶球,在第 2 2 2 次到达 4 4 4 号城市时以 6 6 6 的价格卖出水晶球,赚取的旅费数为 5 5 5。
现在给出 n n n 个城市的水晶球价格, m m m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入格式
第一行包含 2 2 2 个正整数 n n n 和 m m m,中间用一个空格隔开,分别表示城市的数目和道路的数目。
第二行 n n n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n n n 个城市的商品价格。
接下来 m m m 行,每行有 3 3 3 个正整数 x , y , z x,y,z x,y,z,每两个整数之间用一个空格隔开。如果 z = 1 z=1 z=1,表示这条道路是城市 x x x 到城市 y y y 之间的单向道路;如果 z = 2 z=2 z=2,表示这条道路为城市 x x x 和城市 y y y 之间的双向道路。
输出格式
一个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 0 0 0。
样例 #1
样例输入 #1
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
样例输出 #1
5
提示
【数据范围】
输入数据保证 1 1 1 号城市可以到达 n n n 号城市。
对于 10 % 10\% 10% 的数据, 1 ≤ n ≤ 6 1\leq n\leq 6 1≤n≤6。
对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 100 1\leq n\leq 100 1≤n≤100。
对于 50 % 50\% 50% 的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 100000 1\leq n\leq 100000 1≤n≤100000, 1 ≤ m ≤ 500000 1\leq m\leq 500000 1≤m≤500000, 1 ≤ x , y ≤ n 1\leq x,y\leq n 1≤x,y≤n, 1 ≤ z ≤ 2 1\leq z\leq 2 1≤z≤2,$1\leq $ 各城市的编号 ≤ n \leq n ≤n。
水晶球价格 ≤ 100 \leq 100 ≤100。
算法思想
根据题目描述,从 1 1 1 号城市出发,并最终在 n n n 号城市结束旅行,在旅行的过程中,任何城市可以重复经过多次,会选择一个城市买入商品,并在之后经过的另一个城市卖出,求赚取的差价的最大值。
任何城市可以重复经过多次,不妨将整个旅行的过程分为两个阶段:
- 在 1 ∼ k 1\sim k 1∼k号城市买入商品
- 在 k ∼ n k\sim n k∼n号城市卖出商品
要求的是赚取的差价的最大值,不妨设:
- d m i n [ k ] dmin[k] dmin[k]表示 1 ∼ k 1\sim k 1∼k号城市买入商品的最小买入价, d m i n [ k ] = m i n { d m i n [ s ] , w k } dmin[k]=min\{dmin[s], w_k\} dmin[k]=min{dmin[s],wk},其中 k k k是 s s s的邻接点,即存在 s → k s\to k s→k的一条边, w k w_k wk表示商品在 k k k点价格。
- d m a x [ k ] dmax[k] dmax[k]表示 k ∼ n k\sim n k∼n号城市卖出商品的最大卖出价, d m a x [ k ] = m a x { d m a x [ s ] , w k } dmax[k]=max\{dmax[s], w_k\} dmax[k]=max{dmax[s],wk}
那么最终结果为 m a x { d m a x [ k ] − d m i n [ k ] } max\{dmax[k]-dmin[k]\} max{dmax[k]−dmin[k]}, 1 ≤ k ≤ n 1\le k\le n 1≤k≤n。
求 d m i n [ k ] dmin[k] dmin[k]和 d m a x [ k ] dmax[k] dmax[k]时,由于题目给出的图不是拓扑图,状态的更新可能存在环,因此不能使用动态规划,可以使用最短路的方式求解。
最短路求解时也要注意,不能使用Dijkstra算法。Dijkstra算法要求已确定最短路长度的集合中的点不能被再次更新。当出现下图情况时,
2
2
2号点的最小值应该被
3
3
3号点再次更新,因此不能使用Dijkstra算法求解。
这里可以用SPFA求解最短路:
- 首先,以 1 1 1号城市作为起点计算 d m i n [ k ] dmin[k] dmin[k]
- 然后,再以 n n n号城市作为起点,反向求解 d m a x [ k ] dmax[k] dmax[k]
时间复杂度
瓶颈是SPFA,SPFA 算法的时间复杂度是 O ( k m ) O(km) O(km),其中 k k k 一般情况下是个很小的常数,最坏情况下是 n n n 表示总点数, m m m 表示总边数。因此总时间复杂度是 O ( k m ) O(km) O(km)。
代码实现
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, m, w[N], dmin[N], dmax[N], st[N];
vector<int> g[N], rg[N];
void spfa(int *d, int s, vector<int> g[], bool flag)
{
memset(st, 0, sizeof st); //st[i]表示i点是否在队列中
if(flag) memset(d, 0x3f, sizeof dmin); //求最小值初始化为无穷大
queue<int> q;
q.push(s), st[s] = 1, d[s] = w[s]; //起点入队
while(q.size())
{
s = q.front(); q.pop();
st[s] = 0;
for(int k : g[s])
{
if((flag && d[k] > min(d[s], w[k])) || //求dmink
(!flag && d[k] < max(d[s], w[k]))) //求maxk
{
if(flag) d[k] = min(d[s], w[k]);
else d[k] = max(d[s], w[k]);
if(!st[k])
{
st[k] = 1;
q.push(k);
}
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) scanf("%d", &w[i]);
for(int i = 0; i < m; i ++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a].push_back(b), rg[b].push_back(a);
if(c == 2) g[b].push_back(a), rg[a].push_back(b); //双向边
}
spfa(dmin, 1, g, true); //spfa求从1开始的dmin
spfa(dmax, n, rg, false);//spfa反向求从n开始的dmax
int ans = 0;
for(int i = 1; i <= n; i ++) ans = max(ans, dmax[i] - dmin[i]);
printf("%d\n", ans);
return 0;
}