每周一算法:二维差分

题目链接

P3397 地毯

题目描述

n × n n\times n n×n 的格子上有 m m m 个地毯。

给出这些地毯的信息,问每个点被多少个地毯覆盖。

输入格式

第一行,两个正整数 n , m n,m n,m。意义如题所述。

接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)

输出格式

输出 n n n 行,每行 n n n 个正整数。

i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。

样例 #1

样例输入 #1

5 3
2 2 3 3
3 3 5 5
1 2 1 4

样例输出 #1

0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1

提示

样例解释

覆盖第一个地毯后:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

覆盖第一、二个地毯后:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

覆盖所有地毯后:

0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

数据范围

对于 20 % 20\% 20% 的数据,有 n ≤ 50 n\le 50 n50 m ≤ 100 m\le 100 m100

对于 100 % 100\% 100% 的数据,有 n , m ≤ 1000 n,m\le 1000 n,m1000

算法思想

根据题目描述,要将 m m m块地毯铺在 n × n n\times n n×n 的矩阵上,每块地毯会覆盖从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)一个子矩阵,求最终每个格子被多少个地毯覆盖。

朴素思想是枚举每块地毯,将其覆盖的子矩阵从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的所有格子地毯数 + 1 +1 +1,时间复杂度为 O ( m × n 2 ) O(m\times n^2) O(m×n2),显然是无法满足题目要求的。对于这样问题,可以用二维差分来优化。

二维差分

二维差分基本思想:

  • 首先,构造一个 n × n n\times n n×n的差分矩阵d[n][n],并将其初始化为 0 0 0。例如,下图是一个 5 × 5 5\times5 5×5差分矩阵。
    在这里插入图片描述

  • 对于每一次操作,如果要将其中一个从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的子矩阵中所有元素都加上 c c c,那么只需要 4 4 4步操作:

    • d[x1][y1] += c
    • d[x1][y2 + 1] -= c
    • d[x2 + 1][y1] -= c
    • d[x2 + 1][y2 +1 ] += c

    例如,对 ( 2 , 2 ) ∼ ( 4 , 3 ) (2,2)\sim(4,3) (2,2)(4,3)的子矩阵每个元素加上 1 1 1 4 4 4步操作如下图所示:
    在这里插入图片描述

  • 经过 m m m次操作后,只需要对差分矩阵求 1 1 1次前缀和,就可以得到所有操作之后的矩阵了。如下图所示:
    在这里插入图片描述
    二维前缀和可以参考博主的另一篇文章:每周一算法:二维前缀和

时间复杂度

  • 一共进行 m m m次操作,每次操作选择一个子矩阵进行标记,时间复杂度为 O ( m ) O(m) O(m)
  • 操作结束后,对差分矩阵求前缀和,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int d[N][N];

void add(int x1, int y1, int x2, int y2, int c)
{
    d[x1][y1] += c;
    d[x1][y2 + 1] -= c;
    d[x2 + 1][y1] -= c;
    d[x2 + 1][y2 + 1] += c;
}

int main()
{
    int n, m;
    cin >> n >> m;
    while(m --)
    {
        int x1, y1, x2, y2;
        cin >> x1 >> y1 >> x2 >> y2;
        add(x1, y1, x2, y2, 1);
    }
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= n; j ++)
        {
            d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
            cout << d[i][j] << " ";
        }
        cout << endl;
    }
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值