题目链接
题目描述
在 n × n n\times n n×n 的格子上有 m m m 个地毯。
给出这些地毯的信息,问每个点被多少个地毯覆盖。
输入格式
第一行,两个正整数 n , m n,m n,m。意义如题所述。
接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 和 ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)。
输出格式
输出 n n n 行,每行 n n n 个正整数。
第 i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。
样例 #1
样例输入 #1
5 3
2 2 3 3
3 3 5 5
1 2 1 4
样例输出 #1
0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1
提示
样例解释
覆盖第一个地毯后:
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
覆盖第一、二个地毯后:
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
覆盖所有地毯后:
0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
数据范围
对于 20 % 20\% 20% 的数据,有 n ≤ 50 n\le 50 n≤50, m ≤ 100 m\le 100 m≤100。
对于 100 % 100\% 100% 的数据,有 n , m ≤ 1000 n,m\le 1000 n,m≤1000。
算法思想
根据题目描述,要将 m m m块地毯铺在 n × n n\times n n×n 的矩阵上,每块地毯会覆盖从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)到 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)一个子矩阵,求最终每个格子被多少个地毯覆盖。
朴素思想是枚举每块地毯,将其覆盖的子矩阵从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)到 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的所有格子地毯数 + 1 +1 +1,时间复杂度为 O ( m × n 2 ) O(m\times n^2) O(m×n2),显然是无法满足题目要求的。对于这样问题,可以用二维差分来优化。
二维差分
二维差分基本思想:
-
首先,构造一个 n × n n\times n n×n的差分矩阵
d[n][n]
,并将其初始化为 0 0 0。例如,下图是一个 5 × 5 5\times5 5×5差分矩阵。
-
对于每一次操作,如果要将其中一个从 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 到 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的子矩阵中所有元素都加上 c c c,那么只需要 4 4 4步操作:
d[x1][y1] += c
d[x1][y2 + 1] -= c
d[x2 + 1][y1] -= c
d[x2 + 1][y2 +1 ] += c
例如,对 ( 2 , 2 ) ∼ ( 4 , 3 ) (2,2)\sim(4,3) (2,2)∼(4,3)的子矩阵每个元素加上 1 1 1, 4 4 4步操作如下图所示:
-
经过 m m m次操作后,只需要对差分矩阵求 1 1 1次前缀和,就可以得到所有操作之后的矩阵了。如下图所示:
二维前缀和可以参考博主的另一篇文章:每周一算法:二维前缀和
时间复杂度
- 一共进行 m m m次操作,每次操作选择一个子矩阵进行标记,时间复杂度为 O ( m ) O(m) O(m);
- 操作结束后,对差分矩阵求前缀和,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。
代码实现
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int d[N][N];
void add(int x1, int y1, int x2, int y2, int c)
{
d[x1][y1] += c;
d[x1][y2 + 1] -= c;
d[x2 + 1][y1] -= c;
d[x2 + 1][y2 + 1] += c;
}
int main()
{
int n, m;
cin >> n >> m;
while(m --)
{
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
add(x1, y1, x2, y2, 1);
}
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= n; j ++)
{
d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
cout << d[i][j] << " ";
}
cout << endl;
}
}