自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(0)
  • 资源 (16)
  • 收藏
  • 关注

空空如也

PythonMachineLearningBlueprint.pdf

Python Machine Learning Blueprints Intuitive data projects you can relate to An approachable guide to applying advanced machine learning methods to everyday problems Copyright © 2016 Packt Publishing

2019-07-24

PythonEndtoendDataAnalysis.pdf

The aim of this book is to develop skills to effectively approach almost any data analysis problem, and extract all of the available information.

2019-07-24

LargeScaleMachineLearningwithPython.pdf

Large Scale Machine Learning with Python [PDF + EPUB + CODE] Packt Publishing | August 4, 2016 | English | 439 pages Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.

2019-07-24

Building.Machine.Learning.Systems.with.Python.pdf

building machine learning system with Python从清理数据开始,到用scikit-learn包分类,逐层深入,有比较平缓的学习曲线。学习本书需要一定的Python基础,了解一点Python的语法后,熟悉下数据处理的几个包numpy、matplotlib、pandas等,就可以享受本书的内容了。

2019-07-24

AdvancedMachineLearningwithPythonHeartyPac.pdf

Table of Contents Chapter 1. Unsupervised Machine Learning Chapter 2. Deep Belief Networks Chapter 3. Stacked Denoising Autoencoders Chapter 4. Convolutional Neural Networks Chapter 5. Semi-Supervised Learning Chapter 6. Text Feature Engineering Chapter 7. Feature Engineering Part II Chapter 8. Ensemble Methods Chapter 9. Additional Python Machine Learning Tools 通过掌握Python中的尖端机器学习技术来解决具有挑战性的数据科学问题 关于这本书 解决复杂的机器学习问题,探索深入学习 学习使用Python代码来实现一系列机器学习算法和技术 一个实用的教程,通过严谨有效的方法解决现实世界的计算问题 这本书是谁 此标题适用于Python开发人员和分析师或数据科学家,他们希望通过访问数据科学中最强大的一些最新趋势来增加现有技能。如果您曾经考虑过建立自己的图像或文字标签解决方案,或者进入Kaggle比赛,这本书是为您而设的! 以前的Python经验和机器学习的一些核心概念的基础将是有帮助的。 你会学到什么 通过获得对尖端深度学习算法的实际和理论认识与顶尖数据科学家的竞争 应用您的新发现的技能来解决实际问题,通过对每种技术和测试的清晰解释的代码 自动化大量复杂数据,克服耗时的实践挑战 使用强大的功能工程技术提高模型的准确性和现有的输入数据 一起使用多种学习技巧来提高结果的一致性 使用一系列无监督技术了解数据集的隐藏结构 深入了解专家如何以有效,迭代和验证为重点的方法解决具有挑战性的数据问题 通过使用强大的组合技术将多个模型绑在一起,进一步提高您的深入学习模式的有效性 详细 这本书旨在为您带来最前沿的数据科学家今天使用的最相关和功能强大的机器学习技术的导游,这本书正是您将Python算法推向最大潜力所需要的。清晰的示例和详细的代码示例展示了深度学习技术,半监督学习和更多 – 同时使用包括图像,音乐,文本和财务数据在内的现实应用程序。 本书涵盖的机器学习技术处于商业实践的前沿。它们首次适用于图像识别,NLP和网络搜索,计算创意和商业/金融数据建模等领域。深度学习算法和模型集合正在由高科技和数字公司的数据科学家使用,但是在高需求的情况下成功应用所需的技能仍然很少。 本书旨在让读者参与最相关和强大的机器学习技术的导览。清楚描述技术的工作原理和详细的代码示例,在现实世界的应用中展示了深度学习技术,半监督学习等。我们还将了解NumPy和Theano。 在本书的这一端,您将学习一套先进的机器学习技术,并在特征选择和特征工程领域获得广泛的强大技能。 风格和方法 本书着重阐述复杂算法背后的理论和代码,使之具有实用性,可用性和理解力。每个主题都用现实世界的应用程序描述,提供广泛的上下文覆盖和详细的指导。 目录 第1章无监督机器学习 第二章深信仰网络 第3章堆叠去噪自动编码器 第四章卷积神经网络 第五章半监督学习 第六章文本特征工程 第七章特征工程第二部分 第八章合奏方法 其他Python机器学习工具

2019-07-24

2019考研数学概率论强化辅导讲义

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

题源报刊第一课

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

高等数学证明题500例

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

张宇考研数学100题解析

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

2019考研数学张宇1000题解析数学一

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

2019考研数学高等数学汤家凤

1.考点覆盖全面。本书包含考研高等数学所考查的所有知识点,详略得当,适合考生备考练习,重点突破,消除短板。 2.考查要求明确。每章开始都列出大纲的考查要求,方便学生自测复习效果。 3.题型总结详尽。全书在每一章后均根据本章内容,总结整理常考题型,并配以适当例题,学练结合,帮助考生掌握常见题型的解题方法。

2018-07-23

2019考研数学1800数学一

全国硕士研究生招生考试数学试卷分为数学一、数学二、数学三,其中数学一、数学三需要复习高等数学、线性代数、概率统计,数学二需要复习高等数学和线性代数。各试卷题型及分值分布一致,题型分选择题、填空题、解答题(包括计算题、证明题、应用题等),选择题8题,分值32分,填空题6题,分值24分,解答题94分。由于考研数学复习内容量大面广,需要考查考生对基本概念的理解,基本公式及基本原理的掌握,同时需要考生具有很强的计算能力、综合分析能力、逻辑推理能力、空间想象能力及实际应用能力。要牢固掌握基础知识并用所学知识融会贯通地解决问题,需要进行系统的练习,拥有一本通过分层递进的习题训练实现基础知识的掌握和解题能力的提高,并帮助同学们最终取得优异的成绩的有针对性的习题成为广大学子的迫切要求。

2018-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除