p1m2
Accepts: 1003
Submissions: 4595
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
Problem Description
度度熊很喜欢数组!!
我们称一个整数数组为稳定的,若且唯若其同时符合以下两个条件:
- 数组里面的元素都是非负整数。
- 数组里面最大的元素跟最小的元素的差值不超过 11。
举例而言,[1, 2, 1, 2][1,2,1,2] 是稳定的,而 [-1, 0, -1][−1,0,−1] 跟 [1, 2, 3][1,2,3] 都不是。
现在,定义一个在整数数组进行的操作:
- 选择数组中两个不同的元素 aa 以及 bb,将 aa 减去 22,以及将 bb 加上 11。
举例而言,[1, 2, 3][1,2,3] 经过一次操作后,有可能变为 [-1, 2, 4][−1,2,4] 或 [2, 2, 1][2,2,1]。
现在给定一个整数数组,在任意进行操作后,请问在所有可能达到的稳定数组中,拥有最大的『数组中的最小值』的那些数组,此值是多少呢?
Input
输入的第一行有一个正整数 TT,代表接下来有几组测试数据。
对于每组测试数据: 第一行有一个正整数 NN。 接下来的一行有 NN 个非负整数 x_ixi,代表给定的数组。
- 1≤N≤3×10 5
- 0≤xi≤10 8
- 1≤T≤18
- 至多 1 组测试数据中的 N > 30000
Output
对于每一组测试数据,请依序各自在一行内输出一个整数,代表可能到达的平衡状态中最大的『数组中的最小值』,如果无法达成平衡状态,则输出 -1−1。
Sample Input
2
3
1 2 4
2
0 100000000
Sample Output
Copy
2
33333333
这题第一反应是找最优解贪心,想了一会发现找不到最优方法仔细看题后发现数据只有3*10 5;
直接二分找答案就好了
#include<cstring>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<list>
#include<map>
#include<vector>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int a[1000100];
int main()
{
int n,m,k,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
long long sum=0;
memset(a,0,sizeof(a));
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
sum=sum+a[i];
}
sort(a,a+n);
long long l=0,r=sum/n,mid;
while(r-l>1){
long long ans=0;
mid=(l+r)/2;
for(int i=0;i<n;i++){
if(a[i]<mid)ans=ans-mid+a[i];
else if(a[i]>mid)ans=ans+(a[i]-mid)/2;
}
if(ans>=0){l=mid;}
else{r=mid;}
}
int p=l,pp=r;
int ans=0;
for(int i=0;i<n;i++){
if(a[i]<pp)ans=ans-pp+a[i];
else if(a[i]>pp)ans=ans+(a[i]-pp)/2;
}
if(ans>=0)printf("%lld\n",r);
else{
printf("%lld\n",l);
}
}
return 0;
}